Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897−914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
Barker, D. M., and Coauthors, 2012: The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831−843, https://doi.org/10.1175/BAMS-D-11-00167.1.
Bouttier, F., and G. Kelly, 2006: Observing-system experiments in the ECMWF 4D-Var data assimilation system. Quart. J. Roy. Meteor. Soc., 127, 1469−1488, https://doi.org/10.1002/qj.49712757419.
Chambon, P., S. Q. Zhang, A. Y. Hou, M. Zupanski, and S. Cheung, 2014: Assessing the impact of pre‐GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 1219−1235, https://doi.org/10.1002/qj.2215.
Dong, J. L., and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467−487, https://doi.org/10.1002/qj.1970.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905−2919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.
Hamill, T. M., J. S. Whitaker, D. T. Kleist, M. Fiorino, and S. G. Benjamin, 2011: Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 3243−3247, https://doi.org/10.1175/MWR-D-11-00079.1.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hong S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784−2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
Kazumori, M., Q. H. Liu, R. Treadon, and J. C. Derber, 2008: Impact study of AMSR-E radiances in the NCEP global data assimilation system. Mon. Wea. Rev., 136, 541−559, https://doi.org/10.1175/2007MWR2147.1.
Li, J., and H. Liu, 2009: Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett., 36, L11813, https://doi.org/10.1029/2009GL038285.
Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmosphere. J. Atmos. Sci., 63, 3459−3465, https://doi.org/10.1175/JAS3808.1.
Liu, Z. Q., C. S. Schwartz, C. Snyder, and S. Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 atlantic tropical cyclones initialized with a limited-area ensemble kalman filter. Mon. Wea. Rev., 140, 4017−4034, https://doi.org/10.1175/MWR-D-12-00083.1.
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183−3203, https://doi.org/10.1256/qj.02.132.
Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991−3012, https://doi.org/10.1002/qj.49712657002.
Lu, X., X. G. Wang, M. J. Tong, and V. Tallapragada, 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiments with edouard (2014). Mon. Wea. Rev., 145, 4877−4898, https://doi.org/10.1175/MWR-D-17-0068.1.
Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmospheric Research, 92, 190−211, https://doi.org/10.1016/j.atmosres.2008.09.022.
Mangla, R., and I. Jayaluxmi, 2018: Evaluation of microwave radiances of GPM/GMI for the all-sky assimilation in RTTOV framework. Atmospheric Measurement Techniques Discussions, in press, https://doi.org/10.5194/amt-2018-319.
Mangla, R., and J. Indu, 2019: Evaluation of all-sky GPM/GMI radiances for vardah cyclone event in regional data assimilation system. Proc. IGARSS 2019−2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, IEEE, 7540−7543, https://doi.org/10.1109/IGARSS.2019.8898490.
McNally, A. P., J. C. Derber, W. Wu, and B. B. Katz, 2000: The use of TOVS level-1b radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689−724, https://doi.org/10.1002/qj.49712656315.
McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935−957, https://doi.org/10.1256/qj.04.171.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682, https://doi.org/10.1029/97JD00237.
Pan, Y. J., K. F. Zhu, M. Xue, X. G. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF-En3DVar hybrid data assimilation system for the operational rapid refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 3756−3780, https://doi.org/10.1175/MWR-D-13-00242.1.
Parrish, D. F., and J. C. Derber, 1992: The national meteorological center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747−1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Pu, Z. X., C. Yu, V. Tallapragada, J. J. Jin, and W. McCarty, 2019: The impact of assimilation of GPM microwave imager clear-sky radiance on numerical simulations of hurricanes joaquin (2015) and matthew (2016) with the HWRF model. Mon. Wea. Rev., 147, 175−198, https://doi.org/10.1175/MWR-D-17-0200.1.
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the national hurricane center. Wea. Forecasting, 24, 395−419, https://doi.org/10.1175/2008WAF2222128.1.
Schwartz, C. S., Z. Q. Liu, Y. S. Chen, and X. Y. Huang, 2012: Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of typhoon morakot. Wea. Forecasting, 27, 424−437, https://doi.org/10.1175/WAF-D-11-00033.1.
Schwartz, C. S., Z. Q. Liu, X.-Y. Huang, Y.-H. Kuo, and C.-T. Fong, 2013: Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Wea. Rev., 141, 4350−4372, https://doi.org/10.1175/MWR-D-13-00028.1.
Schwartz, C. S., Z. Q. Liu, and X.-Y. Huang, 2015: Sensitivity of limited-area hybrid variational-ensemble analyses and forecasts to ensemble perturbation resolution. Mon. Wea. Rev., 143, 3454−3477, https://doi.org/10.1175/MWR-D-14-00259.1.
Shen F. F., and J. Z. Min, 2015: Assimilating AMSU-a radiance data with the WRF hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci., 32, 1231−1243, https://doi.org/10.1007/s00376-014-4239-4.
Shen, F. F., M. Xue, and J. Z. Min, 2017: A comparison of limited-area 3DVAR and ETKF-En3DVAR data assimilation using radar observations at convective scale for the prediction of Typhoon Saomai (2006). Meteorological Applications, 24, 628−641, https://doi.org/10.1002/met.1663.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble kalman filters. Mon. Wea. Rev., 134, 2490−2502, https://doi.org/10.1175/MWR3187.1.
Wang, X. G., 2011: Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868−884, https://doi.org/10.1175/WAF-D-10-05058.1.
Wang, X. G., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 5132−5147, https://doi.org/10.1175/2008MWR2445.1.
Weng, Y. H., M. Zhang, and F. Q. Zhang, 2011: Advanced data assimilation for cloud-resolving hurricane initialization and prediction. Computing in Science & Engineering, 13, 40−49, https://doi.org/10.1109/MCSE.2011.18.
Xu, D. M., Z. Q. Liu, X.-Y. Huang, J. Z. Min, and H. L. Wang, 2013: Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys., 122, 1−18, https://doi.org/10.1007/s00703-013-0276-2.
Xu, D. M., J. Z. Min, F. F. Shen, J. M. Ban, and P. Chen, 2016: Assimilation of MWHS radiance data from the FY-3B satellite with the WRF hybrid-3DVAR system for the forecasting of binary typhoons. Journal of Advances in Modeling Earth Systems, 8, 1014−1028, https://doi.org/10.1002/2016MS000674.
Yang, C., Z. Q. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Z. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 68, 30917, https://doi.org/10.3402/tellusa.v68.30917.
Zhang, W., Y. Leung, and J. C. L. Chan, 2013: The analysis of tropical cyclone tracks in the western north pacific through data mining. Part I: Tropical cyclone recurvature. J. Appl. Meteorol. Climatol., 52, 1394−1416, https://doi.org/10.1175/JAMC-D-12-045.1.