Abel S. J.,I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 2151-2162, https://doi.org/10.1002/qj.1949
Adler R. F.,G. J. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the global precipitation climatology project (GPCP). Journal of Applied Meteorology and Climatology, 51, 84-99, https://doi.org/10.1175/JAMC-D-11-052.1
Annamalai H.,K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071-1092, https://doi.org/10.1175/JCLI4035.1
Bi, D. H.,Coauthors, 2013: The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal, 63, 41- 64.10.22499/2.00000http://www.bom.gov.au/jshess
Bodas-Salcedo A., Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023-1043, https://doi.org/10.1175/2011BAMS2856.1
Bodas-Salcedo A.,M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson, 2008: Evaluating cloud systems in the met office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, https://doi.org/10.1029/2007JD009620
Chepfer H.,S. Bony, D. Winker, G. Cesana, J. L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251
Dee, D. P.,Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, https://doi.org/10.1002/qj.828
Duan A. M.,J. Hu, and Z. X. Xiao, 2013: The Tibetan Plateau summer monsoon in the CMIP5 simulations. J. Climate, 26, 7747-7766, https://doi.org/10.1175/JCLI-D-12-00685.1
Fallah B.,U. Cubasch, K. Prömmel, and S. Sodoudi, 2016: A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Climate Dyn., 47, 1485-1495, https://doi.org/10.1007/s00382-015-2914-5
Franklin C. N.,Z. A. Sun, D. H. Bi, M. Dix, H. L. Yan, and A. Bodas-Salcedo, 2013a: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal, and regional cloud properties. J. Geophys. Res., 118, 732-748, https://doi.org/10.1029/2012JD018469
Franklin C. N.,Z. A. Sun, D. H. Bi, M. Dix, H. L. Yan, and A. Bodas-Salcedo, 2013b: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Regime-sorted tropical cloud properties. J. Geophys. Res., 118, 6663-6679, https://doi.org/10.1002/jgrd.50496
Fu Q.,K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 2799-2812, https://doi.org/10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2
Fu Y. F.,G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. Journal of Applied Meteorology and Climatology, 46, 667-672, https://doi.org/10.1175/JAM2484.1
Gao Y. X.,S. K. Jiang, and Y. G. Zhang, 1982: Climatology of the Tibetan Plateau. Science Press. Beijing, 300 pp. (in Chinese)
Hu L.,D. F. Deng, X. D. Xu, and P. Zhao, 2017: The regional differences of Tibetan convective systems in boreal summer. J. Geophys. Res., 122, 7289-7299, https://doi.org/10.1002/2017JD026681
Huffman G. J.,R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3-22, https://doi.org/10.1007/978-90-481-2915-7_1
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 446- 727.10.1080/03736245.2010.4808423ba9cf5163e1dbfaef7c26506fcd4cc9http%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F03736245.2010.480842http://www.tandfonline.com/doi/abs/10.1080/03736245.2010.480842The Working Group I contribution to the IPCC Fourth Assessment Report describes progress in understanding of the human and natural drivers of climate change, observed climate change, climate processes and attribution, and estimates of projected future climate change. It builds upon past IPCC assessments and incorporates new findings from the past six years of research. The analysis is based upon large amounts of new and more comprehensive data, more sophisticated analyses of data, improvements in understanding of processes and their simulation in models, and more extensive exploration of uncertainty ranges.
Jayakumar A.,J. Sethunadh, R. Rakhi, T. Arulalan, S. Mohand as, G. R. Iyengar, and E. N. Rajagopal, 2017: Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region. Earth and Space Science, 4, 303-313, https://doi.org/10.1002/2016EA000242
Kummerow C., Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801-1820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
Liu Y.,B. J. Hoskins, M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85, 1- 19.10.2151/jmsj.85.1https://www.jstage.jst.go.jp/article/jmsj/85/1/85_1_1/_article
Luo S.,Z. A. Sun, X. G. Zheng, L. Rikus, and C. Franklin, 2016: Evaluation of ACCESS model cloud properties over the Southern Ocean area using multiple-satellite products. Quart. J. Roy. Meteor. Soc., 142, 160-171, https://doi.org/10.1002/qj.2641
Luo Y. L.,R. H. Zhang, W. M. Qian, Z. Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164-2177, https://doi.org/10.1175/2010JCLI4032.1
Marchand, R., G. G. Mace, T. Ackerman, G. Stephens, 2008: Hydrometeor detection using Cloudsat - An earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519-533, https://doi.org/10.1175/2007JTECHA1006.1
Maussion F.,D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China —— An assessment using remote sensing and ground observations. Hydrology and Earth System Sciences, 15, 1795-1817, https://doi.org/10.5194/hess-15-1795-2011
Pinker R. T.,I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194-211, https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2
Pokharel B.,G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. Journal of Applied Meteorology and Climatology, 50, 2104-2119, https://doi.org/10.1175/JAMC-D-10-05010.1
Stein T. H. M.,D. J. Parker, R. J. Hogan, C. E. Birch, C. E. Holloway, G. M. S. Lister, J. H. Marsham, and S. J. Woolnough, 2015: The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: An evaluation with CloudSat. Quart. J. Roy. Meteor. Soc., 141, 3312-3324, https://doi.org/10.1002/qj.2614
Walters D., Coauthors, 2017: The met office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development, 10, 1487-1520, https://doi.org/10.5194/gmd-10-1487-2017
Wang C. H.,H. X. Shi, H. L. Hu, Y. Wang, and B. K. Xi, 2015: Properties of cloud and precipitation over the Tibetan Plateau. Adv. Atmos. Sci., 32, 1504-1516, https://doi.org/10.1007/s00376-015-4254-0
Webb M.,C. Senior, S. Bony, et al. 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn, 17, 905-922, https://doi.org/10.1007/s003820100
Winker, D. M.,Coauthors, 2010: The calipso mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 1211-1230, https://doi.org/10.1175/2010BAMS3009.1
Wu G. X.,Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea. Mon. Wea. Rev., 126, 913-927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2
Wu, G. X.,Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. National Science Review, 2, 100-116, https://doi.org/10.1093/nsr/nwu045
Xie P. P.,P. A. Arkin, 1997: Global Precipitation: A 17-Year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
Yan Y. F.,Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res., 121, 5864-5877, https://doi.org/10.1002/2015JD024591
Zhang T. P.,P. W. Stackhouse, S. K. Gupta, S. J. Cox, and J. C. Mikovitz, 2015: The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 150, 134-147, https://doi.org/10.1016/j.jqsrt.2014.07.013