Ahmed F.,C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 453-10 462, .https://doi.org/10.1002/2015gl066957
Bringi V. N.,L. Tolstoy, M. Thurai, and W. A. Petersen, 2015: Estimation of spatial correlation of drop size distribution parameters and rain rate using NASA's S-band polarimetric radar and 2D video disdrometer network: Two case studies from MC3E. Journal of Hydrometeorology, 16, 1207-1221, .https://doi.org/10.1175/JHM-D-14-0204.1
Choudhury A. D.,R. Krishnan, 2011: Dynamical response of the south Asian Monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 1347-1363, .https://doi.org/10.1175/2011JAS3705.1
Churchill D. D.,R. A. Houze Jr.,1984: Mesoscale updraft magnitude and cloud-ice content deduced from the ice budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci. 41, 1717-1725, .https://doi.org/10.1175/1520-0469(1984)041<1717:mumaci>2.0.co;2
Cui X. P.,2008: A cloud-resolving modeling study of diurnal variations of tropical convective and stratiform rainfall. J. Geophys. Res. Atmos., 113, D02113, .https://doi.org/10.1029/2007jd008990
Cui X. P.,2009: Quantitative diagnostic analysis of surface rainfall processes by surface rainfall equation. Chinese Journal of Atmospheric Sciences, 33, 375-387, . (in Chinese with English abstract)https://doi.org/10.3878/j.issn.1006-9895.2009.02.15
Cui X. P.,X. F. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res. Atmos., 111, D17112, .https://doi.org/10.1029/2005jd006876
Cui X. P.,X. F. Li, 2009: Diurnal responses of tropical convective and stratiform rainfall to diurnally varying sea surface temperature. Meteor. Atmos. Phys., 104, 53-61, .https://doi.org/10.1007/s00703-008-0016-1
Cui X. P.,X. F. Li, 2011: A cloud-resolving modeling study of short-term surface rainfall processes. Meteor. Atmos. Phys. 111, 1-11, .https://doi.org/10.1007/s00703-010-0121-9
Cui X. P.,Y. S. Zhou, and X. F. Li, 2007: Cloud microphysical properties in tropical convective and stratiform regions. Meteor. Atmos. Phys., 98, 1-11, .https://doi.org/10.1007/s00703-006-0228-1
Feng Z.,X. Q. Dong, B. K. Xi, C. Schumacher, P. Minnis, and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res. Atmos., 116, D23202, .https://doi.org/10.1029/2011JD016451
Gamache J. F.,1990: Microphysical observations in summer MONEX convective and stratiform clouds. Mon. Wea. Rev., 118, 1238-1249, .https://doi.org/10.1175/1520-0493(1990)118<1238:MOISMC>2.0.CO;2
Gao S. T.,X. F. Li, 2010: Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall. J. Geophys. Res. Atmos., 115, D08204, .https://doi.org/10.1029/2009jd012452
Gao S. T.,X. P. Cui, Y. S. Zhou, and X. F. Li, 2005: Surface rainfall processes as simulated in a cloud-resolving model. J. Geophys. Res. Atmos., 110, D10202, .https://doi.org/10.1029/2004jd005467
Gao S. T.,X. P. Cui, and X. F. Li, 2009: A modeling study of diurnal rainfall variations during the 21-day period of TOGA COARE. Adv. Atmos. Sci., 26, 895-905, .https://doi.org/10.1007/s00376-009-8123-6
Grim J. A.,G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 1186-1205. .https://doi.org/10.1175/2008MWR2505.1
Houze R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540-1567. .https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2
Houze R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396-410, .https://doi.org/10.2151/jmsj1965.60.1_396
Houze R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425-461, .https://doi.org/10.1002/qj.49711548702
Houze R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196, .https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
Houze R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Academic Press, 496 pp.
Huang Y. J.,X. P. Cui, 2015a: Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China. Adv. Atmos. Sci., 32, 389-400, .https://doi.org/10.1007/s00376-014-4066-7
Huang Y. J.,X. P. Cui, 2015b: Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009-13. Journal of Hydrometeorology, 16, 1906-1917, .https://doi.org/10.1175/jhm-d-14-0220.1
Huang Y. J.,X. P. Cui, and Y. P. Wang, 2016a: Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China. Atmospheric and Oceanic Science Letters, 9, 90-98, .https://doi.org/10.1080/16742834.2016.1139436
Huang, Y. J, X. P. Cui, X. F. Li, 2016b: A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event. Atmospheric Research, 169, 54-64, .https://doi.org/10.1016/j.atmosres.2015.09.026
Huang, Y. J.,Coauthors, 2018: Forecasting severe convective storms with WRF-based RTFDDA radar data assimilation in Guangdong, China. Atmospheric Research, 209, 131-143, .https://doi.org/10.1016/j.atmosres.2018.03.010
Kumar V. V.,A. Protat, C. Jakob, C. R. Williams, S. Rauniyar, G. L. Stephens, and P. T. May, 2016: The estimation of convective mass flux from radar reflectivities. Journal of Applied Meteorology and Climatology, 55, 1239-1257, .https://doi.org/10.1175/JAMC-D-15-0193.1
Li Q.,X. P. Cui, and J. Cao, 2014: Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province. Chinese Journal of Atmospheric Sciences, 38, 1095-1108, .https://doi.org/10.3878/j.issn.1006-9895.1401.13255
Li X. F.,2006: Cloud microphysical and precipitation responses to a large-scale forcing in the tropical deep convective regime. Meteor. Atmos. Phys., 94, 87-102, .https://doi.org/10.1007/s00703-005-0172-5
Luo Y. L.,Y. J. Wang, H. Y. Wang, Y. J. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res. Atmos., 115, D18117, .https://doi.org/10.1029/2010jd013873
Milbrand t, J. A.,M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064, .https://doi.org/10.1175/Jas3534.1
Milbrand t, J. A.,M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081, .https://doi.org/10.1175/Jas3535.1
Milbrand t, J. A., M. K. Yau, J. Mailhot, S. Bélair, R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625-642, .https://doi.org/10.1175/2009MWR3121.1
Morrison H.,G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991-1007, .https://doi.org/10.1175/2008mwr2556.1
Mrowiec A. A.,C. Rio, A. M. Fridlind, A. S. Ackerman, A. D. Del Genio, O. M. Pauluis, A. C. Varble, and J. W. Fan, 2012: Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res. Atmos., 117, D19201, .https://doi.org/10.1029/2012JD017759
Niu S. J.,X. C. Jia, J. R. Sang, X. L. Liu, C. S. Lu, and Y. G. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. Journal of Applied Meteorology and Climatology, 49, 632-645, .https://doi.org/10.1175/2009JAMC2208.1
Penide G.,V. V. Kumar, A. Protat, and P. T. May, 2013: Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian Wet Season. Mon. Wea. Rev., 141, 3222-3237, .https://doi.org/10.1175/mwr-d-12-00262.1
Rapp A. D.,A. G. Peterson, O. W. Frauenfeld, S. M. Quiring, and E. B. Roark, 2014: Climatology of storm characteristics in Costa Rica using the TRMM precipitation radar. Journal of Hydrometeorology, 15, 2615-2633, .https://doi.org/10.1175/JHM-D-13-0174.1
Romatschke U.,R. A. Houze, Jr., 2011: Characteristics of precipitating convective systems in the South Asian Monsoon. Journal of Hydrometeorology, 12, 3-26, .https://doi.org/10.1175/2010JHM1289.1
Rulfová Z., J. Kyselý, 2013: Disaggregating convective and stratiform precipitation from station weather data. Atmospheric Research, 134, 100-115. .https://doi.org/10.1016/j.atmosres.2013.07.015
Sharma S.,M. Konwar, D. K. Sarma, M. C. R. Kalapureddy, and A. R. Jain, 2009: Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval. Journal of Applied Meteorology and Climatology, 48, 1245-1266, .https://doi.org/10.1175/2008JAMC1948.1
Shen X. Y.,Y. Wang, and X. F. Li, 2011: Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Quart. J. Roy. Meteor. Soc., 137, 236-249, .https://doi.org/10.1002/qj.735
Steiner M.,R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978-2007, .https://doi.org/10.1175/1520-0450(1995)034<1978:ccotds>2.0.co;2
Sui C. H.,K. M. Lau, W. K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711-728, .https://doi.org/10.1175/1520-0469(1994)051<0711:Ttwaec>2.0.Co;2
Sui C. H.,C. T. Tsay, and X. F. Li, 2007: Convective - stratiform rainfall separation by cloud content. J. Geophys. Res. Atmos., 112, D14213, .https://doi.org/10.1029/2006jd008082
Tao W.-K.,J. Simpson, C. H. Sui, B. Ferrier, S. Lang, J. Scala, M. D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673-690, .https://doi.org/10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2
Tao W.-K.,S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78, 333-355,.https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2
Tao W.-K.,S. Lang, X. P. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate 23, 1874-1893, .https://doi.org/10.1175/2009jcli3278.1
Tao W.-K., Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957-982, .https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2
Thurai M.,P. N. Gatlin, and V. N. Bringi, 2016: Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmospheric Research., 169, 416-423, .https://doi.org/10.1016/j.atmosres.2015.04.011
Wang D. H.,X. F. Li, and W.-K. Tao, 2010: Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006). Atmospheric Research, 98, 512-525, .https://doi.org/10.1016/j.atmosres.2010.08.020
Wang J. J.,X. F. Li, and L. D. Carey, 2007: Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea monsoon experiment. J. Atmos. Sci., 64, 360-380, .https://doi.org/10.1175/jas3852.1
Wu D.,X. Q. Dong, B. K. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W. K. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 119-111 135, .https://doi.org/10.1002/jgrd.50798
Xu K. M.,1995: Partitioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci., 52, 551-573, .https://doi.org/10.1175/1520-0469(1995)052<0551:Pmhamb>2.0.Co;2
Yang S.,E. A. Smith, 2000: Vertical structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite-sounding analysis. J. Appl. Meteor., 39, 1491-1513, .https://doi.org/10.1175/1520-0450(2000)039<1491:VSATBO>2.0.CO;2
Yang Y.,X. Chen, and Y. C. Qi, 2013: Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res. Atmos., 118, 1896-1905, .https://doi.org/10.1002/jgrd.50214
Yuter S. E.,R. A. Houze Jr.,1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963, .https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
Zipser E. J.,1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 1568-1589, .https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2