Black M. L.,R. W. Burpee, and F. D. Marks Jr.,1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 1887-1909, .https://doi.org/10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2
Black R. A.,J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802-822, .https://doi.org/10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2
Bowman K. P.,M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 5325-5334, .https://doi.org/10.1175/JCLI-D-14-00804.1
Braun S. A.,2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 43-64, .https://doi.org/10.1175/JAS3609.1
Bringi V. N.,V. Chand rasekar, J. Hubbert, E. Gorgucci, W. L. Rand eu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365, .https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
Chang W.,T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973-1993, .https://doi.org/10.1175/2009JTECHA1236.1
Dudhia J.,1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, .https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Fovell R. G.,H. Su, 2007: Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett., 34, L24810, .https://doi.org/10.1029/2007GL031723
Fritz C.,Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 4321-4332, .https://doi.org/10.1175/JAS-D-13-0378.1
Gamache J. F.,R. A. Houze Jr., and F. D. Marks Jr.,1993: Dual- aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 3221-3243, .https://doi.org/10.1175/1520-0469(1993)050<3221:DAIOTI>2.0.CO;2
Hence D. A.,R. A. Houze Jr.,2011: Vertical structure of Hurricane Eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 1637-1652, .https://doi.org/10.1175/2011JAS3578.1
Hence D. A.,R. A. Houze, Jr., 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 2644-2661, .https://doi.org/10.1175/JAS-D-11-0323.1
Heymsfield A. J.,A. Bansemer, S. L. Durden, R. L. Herman, and T. P. Bui, 2006: Ice microphysics observations in Hurricane Humberto: Comparison with non-hurricane-generated ice cloud layers. J. Atmos. Sci., 63, 288-308, .https://doi.org/10.1175/JAS3603.1
Hong S. Y.,Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, .https://doi.org/10.1175/MWR3199.1
Houze R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344, .https://doi.org/10.1175/2009MWR2989.1
Huang H. L.,M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112-129, .https://doi.org/10.1175/JAS-D-13-053.1
Jiang H. Y.,E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 6459-6470, .https://doi.org/10.1175/JCLI-D-12-00432.1
Jiang H. Y.,E. M. Ramirez, and D. J. Cecil, 2013: Convective and rainfall properties of tropical cyclone inner cores and rainbands from 11 years of TRMM data. Mon. Wea. Rev., 141, 431-450, .https://doi.org/10.1175/MWR-D-11-00360.1
Jin Y., Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606-625, .https://doi.org/10.1175/MWR-D-13-00058.1
Kain J. S.,2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181, .https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Kepert J.,2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 2469-2484, .https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2
Kepert J.,Y. Q. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485-2501, .https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2
Khain A. P.,2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environmental Research Letters, 4, 015004, .https://doi.org/10.1088/1748-9326/4/1/015004
Kummerow C., Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965-1982, .https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
Leppert II, K. D.,D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 2793-2808, .https://doi.org/10.1175/MWR-D-15-0358.1
Li Q. Q.,Y. Q. Wang, and Y. H. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity——A revisit. J. Atmos. Sci., 72, 1323-1345, .https://doi.org/10.1175/JAS-D-14-0224.1
Marks F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909-930, .https://doi.org/10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2
Marks F. D., Jr., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 1296-1317, .https://doi.org/10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2
Masunaga H., Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 1625-1632, .https://doi.org/10.1175/2010BAMS2809.1
McFarquhar G. M.,H. N. Zhang, G. Heymsfield, J. B. Halverson, R. Hood, J. Dudhia, and F. Marks Jr.,2006: Factors affecting the evolution of hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127-150, .https://doi.org/10.1175/JAS3590.1
Miller W.,H. Chen, and D. L. Zhang, 2015: On the rapid intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 3829-3849, .https://doi.org/10.1175/JAS-D-14-0386.1
Mlawer E. J.,S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663-16 682, .https://doi.org/10.1029/97JD00237
Morrison H.,A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642-3659, .https://doi.org/10.1175/2008JCLI2105.1
Morrison H.,G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991-1007, .https://doi.org/10.1175/2008MWR2556.1
Morrison H.,S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 2437-2460, .https://doi.org/10.1175/MWR-D-11-00283.1
Otkin J. A.,W. E. Lewis, A. J. Lenzen, B. D. McNoldy, and S. J. Majumdar, 2017: Assessing the accuracy of the cloud and water vapor fields in the hurricane WRF (HWRF) model using satellite infrared brightness temperatures. Mon. Wea. Rev., 145, 2027-2046, .https://doi.org/10.1175/MWR-D-16-0354.1
Pattnaik S.,C. Inglish, and T. N. Krishnamurti, 2011: Influence of rain-rate initialization, cloud microphysics, and cloud torques on hurricane intensity. Mon. Wea. Rev., 139, 627-649, .https://doi.org/10.1175/2010MWR3382.1
Petty G. W.,1994: Physical retrievals of over -ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 79-99, .https://doi.org/10.1007/BF01030053
Powell M. D.,1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918-938, .https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2
Reinhart B., Coauthors, 2014: Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during Hurricane Karl (2010). Mon. Wea. Rev., 142, 590-605, .https://doi.org/10.1175/MWR-D-13-00008.1
Rogers R. F.,M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 1811-1834, .https://doi.org/10.1175/JAS3932.1
Rosenfeld D.,W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987-1001, .https://doi.org/10.1175/BAMS-D-11-00147.1
Ryzhkov A.,M. Diederich, P. F. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599-619, .https://doi.org/10.1175/JTECH-D-13-00038.1
Skamarock, W. C.,Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/ TN-4751STR, 113 pp, .https://doi.org/10.5065/D68S4MVH
Sun Y.,Z. Zhong, and W. Lu, 2015: Sensitivity of tropical cyclone feedback on the intensity of the Western Pacific subtropical high to microphysics schemes. J. Atmos. Sci., 72, 1346-1368, .https://doi.org/10.1175/JAS-D-14-0051.1
Tao C.,H. Y. Jiang, 2013: Global distribution of hot towers in tropical cyclones based on 11-Yr TRMM data. J. Climate, 26, 1371-1386, .https://doi.org/10.1175/JCLI-D-12-00291.1
Tao W. K.,J. J. Shi, S. S. Chen, S. Lang, P. L. Lin, S. Y. Hong, C. Peters-Lidard, and A. Hou , 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific Journal of Atmospheric Sciences, 47 (1), 1-16, .https://doi.org/10.1007/s13143-011-1001-z
Tokay A.,P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 1669-1685, .https://doi.org/10.1175/2007MWR2122.1
Wang M. J.,K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12 415-12 433, .https://doi.org/10.1002/2016JD025307
Wang Y. Q.,2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022-3036, .https://doi.org/10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2
Wang Y. Q.,2009: How do outer spiral rainbands affect tropical cyclone structure and intensity?. J. Atmos. Sci., 66, 1250-1273, .https://doi.org/10.1175/2008JAS2737.1
Wang Y.,J. W. Fan, R. Y. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 5361-5379, .https://doi.org/10.1002/jgrd.50432
Wiedner M.,C. Prigent, J. R. Pardo, O. Nuissier, J. P. Chaboureau, J. P. Pinty, and P. Mascart, 2004: Modeling of passive microwave responses in convective situations using output from mesoscale models: Comparison with TRMM/TMI satellite observations. J. Geophys. Res. Atmos., 109, D06214, .https://doi.org/10.1029/2003JD004280
Xu H. Y.,G. Q. Zhai, and X. F. Li, 2017: Precipitation efficiency and water budget of Typhoon Fitow (2013): A particle trajectory study. Journal of Hydrometeorology, 18, 2331-2354, .https://doi.org/10.1175/JHM-D-16-0273.1
Yang M. J.,S. A. Braun, and D. S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809-3828, .https://doi.org/10.1175/MWR-D-10-05090.1
Yu Z. F.,Y. Q. Wang, and H. M. Xu, 2015: Observed rainfall asymmetry in tropical cyclones making landfall over China. Journal of Applied Meteorology and Climatology, 54, 117-136, .https://doi.org/10.1175/JAMC-D-13-0359.1
Yu Z. F.,Y. Q. Wang, H. M. Xu, N. Davidson, Y. D. Chen, and H. M. Yu, 2017: On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. Journal of Applied Meteorology and Climatology, 56, 2883-2901, .https://doi.org/10.1175/JAMC-D-16-0334.1
Yuter S. E.,R. A. Houze Jr.,1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963, .https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
Zhang D. L.,Y. B. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745-2763, .https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2
Zhu T.,D. L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109-126, .https://doi.org/10.1175/JAS3599.1