Chen H.,D. L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146-162, .https://doi.org/10.1175/JAS-D-12-062.1
Fierro A. O.,J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477-494, .https://doi.org/10.1175/2010JAS3659.1
Gentry R. C.,T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9, 837-850, .https://doi.org/10.1175/1520-0450(1970)009<0837:ASSARO>2.0.CO;2
Gray W. M.,1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37-69, .https://doi.org/10.1007/BF01277501
Guimond S. R.,G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633-654, .https://doi.org/10.1175/2009JAS3119.1
Guimond S. R.,G. M. Heymsfield, P. D. Reasor, and A. C. Didlake Jr.,2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 3617-3639, .https://doi.org/10.1175/JAS-D-16-0026.1
Halverson J. B.,J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309-324, .https://doi.org/10.1175/JAS3596.1
Hanley D. E.,2002: The evolution of a hurricane-trough interaction from a satellite perspective. Wea. Forecasting, 17, 916-926, .https://doi.org/10.1175/1520-0434(2002)017<0916:TEOAHT>2.0.CO;2
Hazelton A. T.,R. F. Rogers, and R. E. Hart, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: Burst formation and development. Mon. Wea. Rev., 145, 3073-3094, .https://doi.org/10.1175/MWR-D-16-0267.1
Heymsfield G. M.,J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 1310-1330, .https://doi.org/10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2
Hirschberg P. A.,J. M. Fritsch, 1993: On understanding height tendency, Mon. Wea. Rev., 121, 2646-2661, .https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2
Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519-2541, .https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
Holliday C. R.,A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022-1034, .https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
Kain J. S.,2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181, .https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Kain J. S.,J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802, .https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
Kaplan J.,M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108, .https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
Kelley O. A.,J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, .https://doi.org/10.1029/2004GL021616
Liu Y. B.,D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093, .https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2
Menelaou K.,M. K. Yau, and Y. Martinez, 2013: On the origin and impact of a polygonal eyewall in the rapid intensification of hurricane Wilma (2005). J. Atmos. Sci., 70, 3839-3858, .https://doi.org/10.1175/JAS-D-13-091.1
Michalakes J.,J. Dudhia, D. O. Gill, T. B. Henderson, J. B. Klemp, W. Skamarock, and W. Wang, 2005: The Weather Research and Forecast Model: Software architecture and performance. Proc. 11th Workshop on the Use of High Performance Computing in Meteorology, Reading, United Kingdom, ECMWF, 156- 168.dd97ccd775bc123333d9041e08b8f567http%3A%2F%2Fwww.worldscientific.com%2Fdoi%2Fabs%2F10.1142%2F9789812701831_0012%3Fmi%3D6estj0%26amp%3Baf%3DR%26amp%3BContrib%3DHenderson%252C%2BT%26amp%3Bcontent%3DarticlesChapters%26amp%3BcountTerms%3Dtrue%26amp%3Btarget%3Ddefault
Montgomery M. T.,M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386, .https://doi.org/10.1175/JAS3604.1
Nolan D. S.,2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241- 266.e725a7537e65d15fad45a9b33a28f0f7http%3A%2F%2Fams.confex.com%2Fams%2F27Hurricanes%2Fwebprogram%2FPaper107396.htmlhttp://ams.confex.com/ams/27Hurricanes/webprogram/Paper107396.htmlAnalysis of the two simulations shows that the development of the strong mid-level vortex, and the near saturation of the inner core by deep convection, are both required before rapid development can proceed, regardless of the strength of the surface vortex. The relative importance of surface moisture fluxes, latent heat release, inner-core relative humidity, and the merger of vorticity anomalies will be carefully evaluated.
Rodgers E. B.,W. Olson, J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka's (1997) latent heat structure. J. Appl. Meteor., 39, 1983-2006, .https://doi.org/10.1175/1520-0450(2001)040<1983:EFOSPS>2.0.CO;2
Rogers R.,P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970-2991, .https://doi.org/10.1175/MWR-D-12-00357.1
Rogers R.,S. Aberson, J. Kaplan, and S. Goldenberg, 2002: A pronounced upper-tropospheric warm anomaly encountered by the NOAA G-IV aircraft in the vicinity of deep convection. Mon. Wea. Rev., 130, 180-187, .https://doi.org/10.1175/1520-0493(2002)130<0180:APUTWA>2.0.CO;2
Steranka J.,E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 1539-1546, .https://doi.org/10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2
Tang X. B.,F. Ping, S. Yang, M. X. Li, and J. Peng, 2018: Relationship between convective bursts and the rapid intensification of typhoon Mujigae (2015). Atmospheric Science Letters, 19, e811, .https://doi.org/10.1002/asl.811
Vallis G. K.,2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 40 pp.
Wadler J. B.,R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761-780, .https://doi.org/10.1175/MWR-D-17-0213.1
Wang H.,Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142(2), 29-48, .https://doi.org/10.1175/MWR-D-13-00070.1
Yang S.,Q. J. Zuo, and S. T. Gao, 2017: Image of local energy anomaly during a heavy rainfall event. Chin. Phys. B, 26(11), 119201, .https://doi.org/10.1088/1674-1056/26/11/119201
Zhang D.-L.,J. M. Fritsch, 1988: Numerical sensitivity experiments of varying model physics on the structure, evolution and dynamics of two mesoscale convective systems. J. Atmos. Sci., 45, 261-293, .https://doi.org/10.1175/1520-0469(1988)045<0261:NSEOVM>2.0.CO;2
Zhang D. L.,H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, .https://doi.org/10.1029/2011GL050578