Ballard S. P.,B. W. Golding, and R. N. B. Smith, 1991: Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon. Wea. Rev., 119, 2107, https://doi.org/10.1175/1520-0493(1991)119<2107:MMEFOT>2.0.CO;2
Bergot T.,D. Carrer, J. Noilhan, and P. Bougeault, 2005: Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Wea. Forecasting, 20, 627-646, https://doi.org/10.1175/WAF873.1
Bessho, K., Coauthors, 2016: An introduction to Himawari-8/9——Japan's new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94(2), 151-183, https://doi.org/10.2151/jmsj.2016-009
Chen, D. H.,Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53(22), 3433-3445, https://doi.org/10.1007/s11434-008-0494-z
Chen S. J.,1983: A preliminary study of the characteristics of the distribution of air and sea surface temperature in the South China Sea. Marine Science Bulletin, 2( 4), 9- 17. (in Chinese)f3e11193de23ec10ecac9a9aca79fc40http%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-HUTB198304001.htm年度引用
Chen Z. T.,G. F. Dai, S. X. Zhong, Y. Y. Huang, Y. X. Zhang, D. S. Xu, and M. J. Li, 2016: Technical features and prediction performance of typhoon model for the South China Sea. Journal of Tropical Meteorology, 32(6), 831-840, https://doi.org/10.16032/j.issn.1004-4965.2016.06.005
Deardorff J. W.,1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903, https://doi.org/10.1029/JC083iC04p01889
Dee, D. P.,Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, https://doi.org/10.1002/qj.828
Dudhia J.,1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Emmons G.,R. Montgomery, 1947: Note on the physics of fog formation. J. Meteor., 4, 206, https://doi.org/10.1175/1520-0469(1947)004<0207:NOTPOF>2.0.CO;2
Findlater J.,W. T. Roach, and B. C. McHugh, 1989: The haar of north-east Scotland. Quart. J. Roy. Meteor. Soc., 115, 581-608, https://doi.org/10.1002/qj.49711548709
Fu G.,T. Zhang, and F. X. Zhou, 2002: Three-dimensional numerical simulation of real sea fog event over the Yellow Sea. Journal of Ocean University of Qingdao, 32(6), 859-867, https://doi.org/10.3969/j.issn.1672-5174.2002.06.002
Gao S. H.,H. Lin, B. Shen, and G. Fu, 2007: A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Adv. Atmos. Sci., 24(1), 65-81, https://doi.org/10.1007/s00376-007-0065-2
Gao S. H.,Y. L. Qi, S. B. Zhang, and G. Fu, 2010: Initial conditions improvement of sea fog numerical modeling over the Yellow Sea by using cycling 3DVAR Part I: WRF numerical experiments. Periodical of Ocean University of China, 40, 1-9, https://doi.org/10.3969/j.issn.1672-5174.2010.10.001
Gao S. H.,W. Wu, L. L. Zhu, G. Fu, and B. Huang, 2009: Detection of nighttime sea fog/stratus over the Huanghai Sea using MTSAT-1R IR data. Acta Oceanologica Sinica, 28( 2), 23- 35.10.1029/2008JC0048689a0c03fad781850df3a573732c516fffhttp%3A%2F%2Fwww.cnki.com.cn%2FArticle%2FCJFDTotal-SEAE200902004.htmhttp://www.cnki.com.cn/Article/CJFDTotal-SEAE200902004.htmA dual channel difference (DCD) method is applied to detect nighttime sea fog/stratus over the Huanghai Sea using the infrared (IR) data of shortwave (3.5–4.0 μm) and longwave (10.3–11.3 μm) channels from the Multi-functional Transport Satellite (MTSAT)-1R, i.e., shortwave minus longwave brightness temperature difference (SLTD). Twenty-four sea fog events over the Huanghai Sea during March to July of 2006 and 2007 are chosen to determine a suitable value of SLTD for nighttime sea fog/stratus detection, and it is found that the value of –5.5––2.5°C can be taken as a criterion. Two case examples of sea fog events are especially demonstrated in detail utilizing the criterion, and the results show that the derived sea fog/stratus coverage is quite reasonable. This coverage information is very helpful to analyze the formation and evolution of sea fog/stratus during night and can provide sea fog researchers with observational evidences for model results verification. However, more efforts are needed to further obtain vertical extent information of sea fog/stratus and attempt to discriminate between sea fog and stratus.
Ghonima M. S.,H. D. Yang, C. K. Kim, T. Heus, and J. Kleissl, 2017: Evaluation of WRF SCM simulations of stratocumulus-topped marine and coastal boundary layers and improvements to turbulence and entrainment parameterizations. Journal of Advances in Modeling Earth Systems, 9, 2635-2653, https://doi.org/10.1002/2017MS001092
Gultepe, I., Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 1121-1159, https://doi.org/10.1007/s00024-007-0211-x
Haiden, T., Coauthors, 2015: Evaluation of ECMWF forecasts, including 2014-2015 upgrades. Tech. Memo. No. 765.
Heo K. Y.,K. J. Ha, 2010: A coupled model study on the formation and dissipation of sea fogs. Mon. Wea. Rev., 138(4), 1186-1205, https://doi.org/10.1175/2009MWR3100.1
Hogan R. J.,C. A. T. Ferro, I. T. Jolliffe, and D. B. Stephenson, 2010: Equitability revisited: Why the "equitable threat score" is not equitable. Wea. Forecasting, 25, 710-726, https://doi.org/10.1175/2009WAF2222350.1
Hong Y. S.,J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129- 151.
Hong S.-Y.,Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, https://doi.org/10.1175/MWR3199.1
Hu R. J.,F. X. Zhou, 1997: A numerical study on the effects of air-sea conditions on the process of seafog. Journal of Ocean University of Qingdao, 27(3), 282-290, https://doi.org/10.16441/j.cnki.hdxb.1997.03.003
Huang J.,P. W. Chan, 2011: Progress of marine meteorological observation experiment at Maoming of south China. Journal of Tropical Meteorology, 17, 418-429, https://doi.org/10.3969/j.issn.1006-8775.2011.04.012
Huang B.,T. Chen, J. Chen, and L. T. Deng, 2009a: Simulation and test of sea fog numerical prediction system for Yellow Sea and Bohai Sea. Meteorological Science and Technology, 37(3), 271-275, https://doi.org/10.3969/j.issn.1671-6345.2009.03.003
Huang H. J.,J. Huang, C. X. Liu, and W. K. Mao, 2017: Summary analysis of the forecast scores of GRAPES-MOS product in 2010-2017 (Internal report). Institute of Tropical and Marine Meteorology (ITMM), CMA, Guangzhou.
Huang H. J.,H. N. Liu, W. M. Jiang, J. Huang, and W. K. Mao, 2011a: Characteristics of the boundary layer structure of sea fog on the coast of southern China. Adv. Atmos. Sci., 28(6), 1377-1389, https://doi.org/10.1007/s00376-011-0191-8
Huang H. J.,H. N. Liu, J. Huang, W. K. Mao, and X. Y. Bi, 2015: Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon. Wea. Rev., 143, 1907-1923, https://doi.org/10.1175/MWR-D-14-00207.1
Huang H. J.,J. Huang, C. X. Liu, W. K. Mao, and X. Y. Bi, 2016a: Improvement of regional prediction of sea fog on Guangdong coastland using the factor of temperature difference in the near-surface layer. Journal of Tropical Meteorology, 22(1), 66-73, https://doi.org/10.16555/j.1006-8775.2016.01.008
Huang H. J.,G. W. Zhan, C. X. Liu, J. Tu, and W. K. Mao, 2016b: A case study of numerical simulation of sea fog on the southern China coast. Journal of Tropical Meteorology, 22(4), 497-507, https://doi.org/10.16555/j.1006-8775.2016.04.005
Huang H. J.,J. Huang, C. X. Liu, J. N. Yuan, W. K. Mao, and F. Liao, 2011b: Prediction of sea fog of Guangdong coastland using the variable factors output by GRAPES model. Journal of Tropical Meteorology, 17(2), 166-174, https://doi.org/10.3969/j.issn.1006-8775.2011.02.009
Huang H. J.,J. Huang, C. X. Liu, J. N. Yuan, W. H. Lv, Y. Q. Yang, W. K. Mao, and F. Liao, 2009b: Microphysical characteristics of the sea fog in Maoming area. Acta Oceanologica Sinica, 31(2), 17-23, https://doi.org/10.3321/j.issn:0253-4193.2009.02.003
Jolliffe I. T.,D. B. Stephenson, 2012: Forecast Verification: A Practitioner's Guide in Atmospheric Science. 2nd ed., John Wiley & Sons Ltd, 288 pp.10.1002/9781119960003.ch1094a045ebb59fa590eae3831baa09707http%3A%2F%2Fonlinelibrary.wiley.com%2Fbook%2F10.1002%2F9781119960003http://onlinelibrary.wiley.com/doi/10.1111/j.1467-985X.2004.00347_9.x/fullNo abstract is available for this item.
Kim C. K.,S. S. Yum, 2012: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Bound.-Layer Meteor., 143(3), 481-505, https://doi.org/10.1007/s10546-012-9706-9
Köhler, M., M. Ahlgrimm, A. Beljaars, 2011: Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model. Quart. J. Roy. Meteorol. Soc., 137, 43-57, https://doi.org/10.1002/qj.713
Koračin, D., C. E. Dorman, 2017: Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer, 537 pp.
Koračin, D., J. A. Businger, C. E. Dorman, J. M. Lewis, 2005: Formation, evolution, and dissipation of coastal sea fog. Bound.-Layer Meteor., 117, 447-478, .https://doi.org/10.1007/s10546-005-2772-5
Koračin, D., C. E. Dorman, J. M. Lewis, J. G. Hudson, E. M. Wilcox, A. Torregrosa, 2014: Marine fog: A review. Atmospheric Research, 143, 142-175, https://doi.org/10.1016/j.atmosres.2013.12.012
Lamb H.,1943: Haars or North Sea fogs on the coasts of Great Britain. Meteorology Office Publication M.O. 50424.
Leipper D. F.,1948: Fog development at San Diego, California. [J]. Mar. Res., 7, 337- 346.
Lewis J. M.,D. Koračin, and K. T. Redmond, 2004: Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bull. Amer. Meteor. Soc., 85, 395-408, https://doi.org/10.1175/BAMS-85-3-395
Li P. Y.,G. Fu, C. G. Lu, D. Fu, and S. Wang, 2012: The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet. Wea. Forecasting, 27, 1538-1553, https://doi.org/10.1175/WAF-D-11-00152.1
Locarnini R. A.,A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vo. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61l, 182 pp.
Mlawer E. J.,S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663-16 682, https://doi.org/10.1029/97JD00237
Murphy A. H.,1996: The Finley affair: A signal event in the history of forecast verification. Wea. Forecasting, 11, 3-20, https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
Petterssen S.,1938: On the causes and the forecasting of the California fog. Bull. Amer. Meteor. Soc., 19, 49-55, https://doi.org/10.1175/1520-0477-19.2.49
Román-Cascón, C., G. J. Steeneveld, C. Yagüue, M. Sastre, J. A. Arrillaga, G. Maqueda, 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 1048-1063, https://doi.org/10.1002/qj.2708
Skamarock, W. C.,Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH
Tang Y. M.,2012: The effect of variable sea surface temperature on forecasting sea fog and sea breezes: A case study. Journal of Applied Meteorology and Climatology, 51, 986-990, https://doi.org/10.1175/JAMC-D-11-0253.1
Tao S. Y.,L. X. Chen, 1987: A review of Recent Research on the East Asian Summer Monsoon. Monsoon Meteorology. C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60- 92.e667c5bb0e92c19ad3ac7ba9f8f9098chttp://xueshurefer.baidu.com/nopagerefer?id=0874db7ee777dd2c34bccbb6a93ac39ahttp://xueshurefer.baidu.com/nopagerefer?id=0874db7ee777dd2c34bccbb6a93ac39a
Tardif R.,2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 1221-1240, https://doi.org/10.1007/s00024-007-0216-5
Taylor G. I.,1917: The formation of fog and mist. Quart. J. Roy. Meteor. Soc., 43, 241-268, https://doi.org/10.1002/qj.49704318302
Thiébaux, J., E. Rogers, W. Q. Wang, B. Katz, 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645-656, https://doi.org/10.1175/BAMS-84-5-645
Tuleya R. E.,1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2
Wang B. H.,1985: Sea Fog.China Ocean Press, 330 pp.
Wang Y. M.,S. H. Gao, G. Fu, J. L. Sun, and S. P. Zhang, 2014: Assimilating MTSAT-derived humidity in nowcasting sea fog over the Yellow Sea. Wea. Forecasting, 29, 205-225, https://doi.org/10.1175/WAF-D-12-00123.1
Wilson T. H.,R. G. Fovell, 2018: Modeling the evolution and life cycle of radiative cold pools and fog. Wea. Forecasting, 33(1), 203-220, https://doi.org/10.1175/WAF-D-17-0109.1
World Meteorological Organization, 2008: WMO-No.8: Guide to Meteorological Instruments and Methods of Observation. 7th ed., WMO, Part I: 14- 3.f7d7867a4c3f0468baf9f93b31f13cdehttp%3A%2F%2Fagris.fao.org%2Fagris-search%2Fsearch.do%3FrecordID%3DXF2015005201http://agris.fao.org/agris-search/search.do?recordID=XF2015005201Abstract Library retains latest ed. only. Includes Supplement no. 1, December 1997 6. ed.
Wu X. J.,S. M. Li, 2014: Automatic sea fog detection over Chinese adjacent oceans using Terra/MODIS data. Int. J. Remote Sens., 35(21), 7430-7457, https://doi.org/10.1080/01431161.2014.968685
Xu D. S.,Z. T. Chen, S. X. Zhong, Y. J. Wen, and D. D. Xie, 2014: The limitation of cloud base mass flux in cumulus parameterization and its application in a high-resolution model. Journal of Tropical Meteorology, 30(3), 401-412, https://doi.org/10.3969/j.issn.1004-4965.2014.03.001
Xue J. S.,S. Y. Zhuang, G. F. Zhu, H. Zhang, Z. Q. Liu, Y. Liu, and Z. R. Zhuang, 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53(22), 3446-3457, https://doi.org/10.1007/s11434-008-0416-0
Yang Y.,X. M. Hu, S. H. Gao, and Y. M. Wang, 2019: Sensitivity of WRF simulations with the YSU PBL scheme to the lowest model level height for a sea fog event over the Yellow Sea. Atmospheric Research, 215, 253-267, https://doi.org/10.1016/j.atmosres.2018.09.004
Yu R. L.,Y. N. Wang, and Y. P. Li, 2007: An operational objective forecast system for sea fog over the Yellow Sea and East China Sea. Atmospheric Science Research and Application, (2), 28- 37. (in Chinese)5e0cc61d54cff3f252eeab57046a6faahttp%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-DQTY200702006.htmhttp://en.cnki.com.cn/Article_en/CJFDTOTAL-DQTY200702006.htmAn objective forecast system is established to supply the real-time operational forecast of sea fog over the Yellow Sea and East China Sea.Surface observational data from nine coastal and island stations along the Yellow Sea and East China Sea coast are used.Firstly,characteristics of different grades of sea fog are statistically analyzed.And the favorable sea and atmospheric conditions to form sea fog are studied quantitatively.Then,the conditions with no sea fog are determined and the sea fog forecasting equations are established.In the end,sea fog forecasting with three grades is carried on by use of output from the atmospheric circulation model,such as the air temperature,wind speed and direction,relative humidity of air,sea surface temperature,etc. The results show that the sea fog objective forecast method has high skill for sea fog forecast over a large area,especially in the sea fog season during February and April in 2007 although there is some weakness in some aspects.In the whole the skill for sea fog forecast over the Yellow Sea is higher than that over the East China Sea. The objective forecast system can run automatically from data input to output of results with high stability during past years.
Yuan J. N.,J. Huang, 2011: An observational analysis and 3-dimensional numerical simulation of a sea fog event near the Pearl River Mouth in boreal spring. Acta Meteorologica Sinica, 69(5), 847-859, https://doi.org/10.11676/qxxb2011.074
Zhang D. L.,R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2
Zhang G. C.,2016: The progress of fog forecast operation in China. Advances in Meteorological Science and Technology, 6(2), 42-48. https://doi.org/10.3969/j.issn.2095-1973.2016.02.004
Zhang S. P.,Z. P. Ren, 2010: The influence of the thermal effect of underlaying surface on the spring sea fog over the Yellow Sea: Observations and numerical simulations. Acta Meteorologica Sinica, 68(4), 439-449, https://doi.org/10.11676/qxxb2010.043
Zhang S. P.,L. Yi, 2013: A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas. Pure Appl. Geophys., 170(11), 1931-1944, https://doi.org/10.1007/s00024-013-0641-6
Zhang S. P.,J. C. Long, Y. J. Yin, W. Y. Yang, and W. B. Yang, 2014: Analysis of the process of a local sea fog lifted into low cloud in Eastern China. Periodical of Ocean University of China, 44(2), 1-10, https://doi.org/10.16441/j.cnki.hdxb.2014.02.001
Zhang S. P.,S. P. Xie, Q. Y. Liu, Y. Q. Yang, X. G. Wang, and Z. P. Ren, 2009: Seasonal variations of Yellow Sea fog: Observations and mechanisms. J. Climate, 22, 6758-6772, https://doi.org/10.1175/2009JCLI2806.1
Zhang X. B.,Q. L. Wan, J. S. Xue, W. Y. Ding, and H. R. Li, 2015: The impact of different physical processes and their parameterizations on forecast of a heavy rainfall in south China in annually first raining season. Journal of Tropical Meteorology, 21(2), 194-210, https://doi.org/10.16555/j.1006-8775.2015.02.010
Zhang X. B.,Y. L. Luo, Q. L. Wan, W. Y. Ding, and J. X. Sun, 2016: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31, 1271-1292, https://doi.org/10.1175/WAF-D-15-0156.1
Zhong S. X.,Z. T. Chen, 2015: Improved wind and precipitation forecasts over South China using a modified orographic drag parameterization scheme. J. Meteor. Res., 29(1), 132-143, https://doi.org/10.1007/s13351-014-4934-1
Zhou B. B.,2011: Introduction to a new fog diagnostic scheme. NCEP Office Note 466, 43 pp.
Zhou B. B.,J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303-322, https://doi.org/10.1175/2009WAF2222289.1
Zhou B. B.,J. Du, I. Gultepe, and G. Dimego, 2012: Forecast of low visibility and fog from NCEP: Current status and efforts. Pure Appl. Geophys., 169, 895-909, https://doi.org/10.1007/s00024-011-0327-x