Alpert P.,Y. Rubin, 2018: First daily mapping of surface moisture from cellular network data and comparison with both observations/ECMWF product. Geophys. Res. Lett., 45(16), 8619-8628, https://doi.org/10.1029/2018GL078661
Alpert P.,H. Messer, and N. David, 2016: Meteorology: Mobile networks aid weather monitoring. Nature, 537(7622), 617, https://doi.org/10.1038/537617e
Berne A.,R. Uijlenhoet, 2007: Path-averaged rainfall estimation using microwave links: Uncertainty due to spatial rainfall variability. Geophys. Res. Lett., 34(7), L07403, https://doi.org/10.1029/2007GL029409
Chwala, C., Coauthors, 2012: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of Southern Germany. Hydrology and Earth System Sciences, 16(8), 2647-2661, https://doi.org/10.5194/hess-16-2647-2012
Chwala C.,H. Kunstmann, 2019: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. Wiley Interdisciplinary Reviews: Water, 6(2), e1337, https://doi.org/10.1002/wat2.1337
Chwala C.,H. Kunstmann, S. Hipp, and U. Siart, 2014: A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing. Atmospheric Research, 144, 57-72, https://doi.org/10.1016/j.atmosres.2013.05.014
Cox J.,B. Plale, 2011: Improving automatic weather observations with the public Twitter stream. IU School of Informatics and Computing. https://pdfs.semanticscholar.org/bbe1/0421b7238e4e6d4799a77bb79275994372e1.pdf
David N.,2018: Utilizing microwave communication data for detecting fog where satellite retrievals are challenged. Natural Hazards, 94(2), 867-882, https://doi.org/10.1007/s11069-018-3428-3
David N.,H. O. Gao, 2016: Using cellular communication networks to detect air pollution. Environ. Sci. Technol., 50(17), 9442-9451, https://doi.org/10.1021/acs.est.6b00681
Davíd, N., H. O. Gao, 2017: Atmospheric monitoring using commercial microwave networks. Proc. 15th International Conf. on Environmental Science and Technology, Rhodes, Greece, Global NEST, 1- 4.
David N.,P. Alpert, and H. Messer, 2009: Novel method for water vapour monitoring using wireless communication networks measurements. Atmospheric Chemistry and Physics, 9(7), 2413-2418, https://doi.org/10.5194/acp-9-2413-2009
David N.,P. Alpert, and H. Messer, 2011: Humidity measurements using commercial microwave links. Advanced Trends in Wireless Communications. M. Khatib, Ed., InTech, 520 pp.
David N.,P. Alpert, and H. Messer, 2013: The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions. Atmospheric Research, 131, 13-21, https://doi.org/10.1016/j.atmosres.2013.01.004
David N.,O. Sendik, H. Messer, and P. Alpert, 2015: Cellular network infrastructure: The future of fog monitoring? Bull. Amer. Meteor. Soc., 96(10), 1687-1698, https://doi.org/10.1175/BAMS-D-13-00292.1
David N.,O. Harel, P. Alpert, and H. Messer, 2016: Study of attenuation due to wet antenna in microwave radio communication. Proc. 2016 IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, IEEE, 4418-4422, https://doi.org/10.1109/ICASSP.2016.7472512
David N.,O. Sendik, Y. Rubin, H. Messer, H. O. Gao, D. Rostkier-Edelstein, and P. Alpert, 2019: Analyzing the ability to reconstruct the moisture field using commercial microwave network data. Atmospheric Research, 219, 213-222, https://doi.org/10.1016/j.atmosres.2018.12.025
Fabry F.,2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134(1), 79-91, https://doi.org/10.1175/MWR3055.1
Fencl M.,J. Rieckermann, P. S\'ykora D. Str\'ansk\'y, and V. Bare\vs, 2015: Commercial microwave links instead of rain gauges: Fiction or reality? Water Science & Technology, 71(1), 31-37, https://doi.org/10.2166/wst.2014.466
Goldshtein O.,H. Messer, and A. Zinevich, 2009: Rain rate estimation using measurements from commercial telecommunications links. IEEE Transactions on Signal Processing, 57(4), 1616-1625, https://doi.org/10.1109/TSP.2009.2012554
Gosset, M., Coauthors, 2016: Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks. Bull. Amer. Meteor. Soc., 97(3), ES49-ES51, https://doi.org/10.1175/BAMS-D-15-00164.1
Gultepe, I., Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 1121-1159, https://doi.org/10.1007/s00024-007-0211-x
Harel O.,N. David, P. Alpert, and H. Messer, 2015: The potential of microwave communication networks to detect dew——Experimental study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9), 4396-4404, https://doi.org/10.1109/JSTARS.2015.2465909
Kawamura, S., Coauthors, 2017: Water vapor estimation using digital terrestrial broadcasting waves. Radio Sci., 52(3), 367-377, https://doi.org/10.1002/2016RS006191
Lensky I. M.,D. Rosenfeld, 2008: Clouds-aerosols-precipitation satellite analysis tool (CAPSAT). Atmospheric Chemistry and Physics, 8(22), 6739-6753, https://doi.org/10.5194/acp-8-6739-2008
Madaus L. E.,C. F. Mass, 2017: Evaluating smartphone pressure observations for mesoscale analyses and forecasts. Wea. Forecasting, 32(2), 511-531, https://doi.org/10.1175/WAF-D-16-0135.1
Mass C. F.,L. E. Madaus, 2014: Surface pressure observations from smartphones: A potential revolution for high-resolution weather prediction? Bull. Amer. Meteor. Soc., 95(9), 1343-1349, https://doi.org/10.1175/BAMS-D-13-00188.1
McNicholas C.,C. F. Mass, 2018a. Smartphone pressure collection and bias correction using machine learning. J. Atmos. Oceanic Technol., 35(3), 523-540, https://doi.org/10.1175/JTECH-D-17-0096.1
McNicholas C.,C. F. Mass, 2018b: Impacts of assimilating smartphone pressure observations on forecast skill during two case studies in the pacific northwest. Wea. Forecasting, 33(5), 1375-1396, https://doi.org/10.1175/WAF-D-18-0085.1
Messer H.,A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312(5774), 713, https://doi.org/10.1126/science.1120034
Michael Y.,I. M. Lensky, S. Brenner, A. Tchetchik, N. Tessler, and D. Helman, 2018: Economic assessment of fire damage to urban forest in the wildland-urban interface using planet satellites constellation images. Remote Sens., 10(9), 1479, https://doi.org/10.3390/rs10091479
Overeem A.,J. C. R. Robinson, H. Leijnse, G. J. Steeneveld, B. K. P. Horn, and R. Uijlenhoet, 2013a: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40(15), 4081-4085, https://doi.org/10.1002/grl.50786
Overeem A.,H. Leijnse, and R. Uijlenhoet, 2013b: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci., 110(8), 2741-2745, https://doi.org/10.1073/pnas.1217961110
Pan Z. X.,H. Yu, C. Y. Miao, and C. Leung, 2017: Crowdsensing air quality with camera-enabled mobile devices. Proceedings of the. Twenty-Ninth AAAI Conference. on Innovative Applications, San Francisco, CA, AAAI, 4728- 4733.
Price C.,R. Maor, and H. Shachaf, 2018: Using smartphones for monitoring atmospheric tides. Journal of Atmospheric and Solar-Terrestrial Physics, 174, 1-4, https://doi.org/10.1016/j.jastp.2018.04.015
Rabiei E.,U. Haberland t, M. Sester, and D. Fitzner, 2013: Rainfall estimation using moving cars as rain gauges-laboratory experiments. Hydrology and Earth System Sciences, 17(11), 4701-4712, https://doi.org/10.5194/hess-17-4701-2013
Weckwerth, T. M.,Coauthors, 2004: An overview of the international H2O project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253-278, https://doi.org/10.1175/BAMS-85-2-253
Wong C. J.,M. Z. MatJafri, K. Abdullah, H. S. Lim, and K. L. Low, 2007: Temporal air quality monitoring using surveillance camera. Proc. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, IEEE, 2864-2868, https://doi.org/10.1109/IGARSS.2007.4423441