Abdul-Razzak H.,S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 6837-6844, https://doi.org/10.1029/1999JD901161
Bao Q.,G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131-1142, https://doi.org/10.1007/s00376-010-9177-1
Bodas-Salcedo, A., Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023-1043, https://doi.org/10.1175/2011BAMS2856.1
Bony, S., Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445-3482, https://doi.org/10.1175/JCLI3819.1
Bretherton C. S.,S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422-3448, https://doi.org/10.1175/2008JCLI2556.1
Chen B. D.,X. D. Liu, 2005: Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys. Res. Lett., 32, L01804, https://doi.org/10.1029/2004GL020868
Chen G. X.,W. C. Wang, and J. P. Chen, 2015: Aerosol-stratocumulus-radiation interactions over the southeast pacific. J. Atmos. Sci., 72, 2612-2621, https://doi.org/10.1175/JAS-D-14-0319.1
Chen G. X.,J. Yang, Q. Bao, and W. C. Wang. 2018: Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing. Climate Dyn., 51, 3985-3998, https://doi.org/10.1007/s00382-017-3691-0
Chen J.-P.,S.-T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 51-78, https://doi.org/10.1256/qj.03.41
Cheng C.-T.,W.-C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quart. J. Roy. Meteor. Soc., 133, 283-297, https://doi.org/10.1002/qj.25
Cheng C.-T.,W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research, 96, 461-476, https://doi.org/10.1016/j.atmosres.2010.02.005
Duan J.,J. T. Mao, 2008: Progress in researches on interaction between aerosol and cloud. Advances in Earth Science, 23, 252-261, https://doi.org/10.11867/j.issn.1001-8166.2008.03.0252
Ellis T. D.,T. L'Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, https://doi.org/10.1029/2008GL036728
Fan J. W.,Y. Wang, D. Rosenfeld, and X. H. Liu, 2016: Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 4221-4252, https://doi.org/10.1175/JAS-D-16-0037.1
Feingold G.,B. Stevens, W. R. Cotton, and R. L. Walko, 1994: An explicit cloud microphysics/LES model designed to simulate the Twomey effect. Atmospheric Research, 33, 207-233, https://doi.org/10.1016/0169-8095(94)90021-3
Gettelman A.,S. C. Sherwood, 2016: Processes responsible for cloud feedback. Current Climate Change Reports, 2, 179-189, https://doi.org/10.1007/s40641-016-0052-8
Harris L. M.,S. J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27, 4890-4910, https://doi.org/10.1175/JCLI-D-13-00596.1
Hazra A.,P. Mukhopadhyay, S. Taraphdar, J.-P. Chen, and W. R. Cotton, 2013: Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res., 118, 7157-7168, https://doi.org/10.1002/jgrd.50546
Holtslag A. A. M.,B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825-1842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
Hong S. Y.,J. Dudhia, and S. H. Chen, 2002: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Jiang H. L.,G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study. J. Geophys. Res., 106, 15 113-15 122, https://doi.org/10.1029/2000JD900303
Lamarque, J. F.,Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geoscientific Model Development, 5, 369-411, https://doi.org/10.5194/gmd-5-369-2012
Lee S. S.,L. J. Donner, 2011: Effects of cloud parameterization on radiation and precipitation: A comparison between single-moment microphysics and double-moment microphysics. Terrestrial, Atmospheric and Oceanic Sciences, 22, 403-420, https://doi.org/10.3319/TAO.2011.03.03.01
Li J. D.,W. C. Wang, Z. A. Sun, G. X. Wu, H. Liao, and Y. M. Liu, 2014a: Decadal variation of East Asian radiative forcing due to anthropogenic aerosols during 1850-2100, and the role of atmospheric moisture. Climate Research, 61, 241-257, https://doi.org/10.3354/cr01236
Li J. D.,J. Y. Mao, and F. Wang, 2017a: Comparative study of five current reanalyses in characterizing total cloud fraction and top-of-the-atmosphere cloud radiative effects over the Asian monsoon region. International Journal of Climatology, 37, 5047-5067, https://doi.org/10.1002/joc.5143
Li J.-X.,Q. Bao, Y.-M. Liu, and G.-X. Wu, 2017b: Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmospheric and Oceanic Science Letters, 10, 329-336, https://doi.org/10.1080/16742834.2017.1331111
Li, L. J.,Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543-560, https://doi.org/10.1007/s00376-012-2140-6
Li, L. J.,Coauthors, 2014b: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou et al., Eds., Springer, 39-43, https://doi.org/10.1007/978-3-642-41801-3
Lim K. S. S.,S. Y. Hong, 2010: Development of an Effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, https://doi.org/10.1175/2009MWR2968.1
Lin Y. L.,R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065-1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
Morrison H.,J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677, https://doi.org/10.1175/JAS3446.1
Peng Y. R.,U. Lohmann, R. Leaitch, C. Banic, and M. Couture, 2002: The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE. ACE. J. Geophys. Res., 107, 4106, https://doi.org/10.1029/2000JD000281
Pinto J. O.,1998: Autumnal mixed-phase cloudy boundary layers in the arctic. J. Atmos. Sci., 55, 2016-2038, https://doi.org/10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2
Reisner J.,R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071-1107, https://doi.org/10.1002/qj.49712454804
Roh W.,M. Satoh, and T. Nasuno, 2017: Improvement of a cloud microphysics scheme for a global nonhydrostatic model using TRMM and a satellite simulator. J. Atmos. Sci., 74, 167-184, https://doi.org/10.1175/JAS-D-16-0027.1
Rosenfeld D.,S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol-cloud interactions. Science, 343, 379-380, https://doi.org/10.1126/science.1247490
Salzmann M.,Y. Ming, J. C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner, 2010: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmospheric Chemistry and Physics, 10, 8037-8064, https://doi.org/10.5194/acp-10-8037-2010
Sassen K.,Z. E. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591
Seifert A.,K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 45-66, https://doi.org/10.1007/s00703-005-0112-4
Stephens, G. L.,Coauthors, 2012: An update on Earth's energy balance in light of the latest global observations. Nature Geoscience, 5, 691-696, https://doi.org/10.1038/ngeo1580
Wang W. C.,J. P. Chen, I. S. A. Isaksen, I. C. Tsai, K. Noone, and K. Mcguffie, 2012: Climate-chemistry interaction: Future tropospheric ozone and aerosols. The Future of the World's Climate, 2nd ed, A. Henderson-Sellers and K. McGuffie, Eds., Elsevier, 367-399, https://doi.org/10.1016/B978-0-12-386917-3.00013-0
Wang W. C.,G. X. Chen, and Y. Y. Song, 2017: Modeling aerosol climate effects over monsoon Asia: A collaborative research program. Adv. Atmos. Sci., 34, 1195-1203, https://doi.org/10.1007/s00376-017-6319-8
Whitby K. T.,1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135-159, https://doi.org/10.1016/0004-6981(78)90196-8
Wild M.,D. Folini, C. Schär N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 3107-3134, https://doi.org/10.1007/s00382-012-1569-8
Wood R.,P. R. Field, and W. R. Cotton, 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmospheric Research, 65, 109-128, https://doi.org/10.1016/S0169-8095(02)00071-6
Wu G. X.,H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1-18, https://doi.org/10.1007/BF02657024
Yang J.,W. C. Wang, G. X. Chen, Q. Bao, X. Qi, S. Y. Zhou, 2018: Intraseasonal variation of the black carbon aerosol concentration and its impact on atmospheric circulation over the Southeastern Tibetan Plateau. J. Geophys. Res., 123, 10 881-10 894, https://doi.org/10.1029/2018JD029013
Zelinka M. D.,D. A. Rand all, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty. Nat. Clim. Change, 7, 674-678, https://doi.org/10.1038/nclimate3402
Zhang X. Y.,Y. Q. Wang, T. Niu, X. C. Zhang, S. L. Gong, Y. M. Zhang, and J. Y. Sun, 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmospheric Chemistry and Physics, 12, 779-799, https://doi.org/10.5194/acp-12-779-2012
Zhou L. J.,Y. M. Liu, Q. Bao, H. Y. Yu, and G. X. Wu, 2012: Computational performance of the high-resolution atmospheric model FAMIL. Atmospheric and Oceanic Science Letters, 5, 355-359, https://doi.org/10.1080/16742834.2012.11447024
Zhou, L. J.,Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1-20, https://doi.org/10.1002/2014MS000349