Badin G.,2014: On the role of non-uniform stratification and short-wave instabilities in three-layer quasi-geostrophic turbulence. Physics of Fluids, 26, 096603, https://doi.org/10.1063/1.4895590
Badin G.,F. Crisciani, 2018: Variational Formulation of Fluid and Geophysical Fluid Dynamics: Mechanics, Symmetries and Conservation Laws. Advances in Geophysical and Environmental Mechanics and Mathematics, Springer, 182 pp, https://doi.org/10.1007/978-3-319-59695-2
Blackmon M. L.,J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the northern hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040-1053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2
Boyd J. P.,1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285-2291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2
Branscome L. E.,1983: The Charney Baroclinic stability problem: Approximate solutions and modal structures. J. Atmos. Sci., 40, 1393-1409, https://doi.org/10.1175/1520-0469(1983)040<1393:TCBSPA>2.0.CO;2
Bretherton F. P.,1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325-334, https://doi.org/10.1002/qj.49709239302
Brown, Jr. J. A., 1969: A numerical investigation of hydrodynamic instability and energy conversions in the quasi-geostrophic atmosphere: Part I. J. Atmos. Sci., 26, 352-365, https://doi.org/10.1175/1520-0469(1969)026<0352:ANIOHI>2.0.CO;2
Burger A. P.,1962: On the non-existence of critical wavelengths in a continuous baroclinic stability problem. J. Atmos. Sci., 19, 31-38, https://doi.org/10.1175/1520-0469(1962)019<0031:OTNEOC>2.0.CO;2
Cai M.,M. Mak, 1990: On the basic dynamics of regional cyclogenesis. J. Atmos. Sci., 47, 1417-1442, https://doi.org/10.1175/1520-0469(1990)047<1417:OTBDOR>2.0.CO;2
Chai J. Y.,G. K. Vallis, 2014: The role of criticality on the horizontal and vertical scales of extratropical eddies in a dry GCM. J. Atmos. Sci., 71, 2300-2318, https://doi.org/10.1175/JAS-D-13-0351.1
Chang E. K. M.,1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038-2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2
Chang E. K. M.,I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999-1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2
Chapman C. C.,A. M. Hogg, A. E. Kiss, and S. R. Rintoul, 2015: The dynamics of southern ocean storm tracks. J. Phys. Oceanogr., 45, 884-903, https://doi.org/10.1175/JPO-D-14-0075.1
Charney J. G.,1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136-162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
Charney J. G.,P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83-109, https://doi.org/10.1029/JZ066i001p00083
Deng Y.,M. Mak, 2006: Nature of the differences in the intraseasonal variability of the pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63, 2602-2615, https://doi.org/10.1175/JAS3749.1
Dickinson R. E.,1969: Theory of planetary wave-zonal flow interaction. J. Atmos. Sci., 26, 73-81, https://doi.org/10.1175/1520-0469(1969)026<0073:TOPWZF>2.0.CO;2
Edmon H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600-2616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2
Farrell B. F.,1982: Pulse asymptotics of the Charney Baroclinic instability problem. J. Atmos. Sci., 39, 507-517, https://doi.org/10.1175/1520-0469(1982)039<0507:PAOTCB>2.0.CO;2
Fels S. B.,R. S. Lindzen, 1973: The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn., 5, 211-212. https://doi.org/10.1080/03091927308236117
Fournier A.,2002: Atmospheric energetics in the wavelet domain. Part I: Governing equations and interpretation for idealized flows. J. Atmos. Sci., 59, 1182-1197, https://doi.org/10.1175/1520-0469(2002)059<1182:AEITWD>2.0.CO;2
Fullmer J. W. A.,1982: The baroclinic instability of highly structured one-dimensional basic states. J. Atmos. Sci., 39, 2371-2387, https://doi.org/10.1175/1520-0469(1982)039<2371:TBIOHS>2.0.CO;2
Gall R.,1976a: Structural changes of growing baroclinic waves. J. Atmos. Sci., 33, 374-390, https://doi.org/10.1175/1520-0469(1976)033<0374:SCOGBW>2.0.CO;2
Gall R.,1976b: A comparison of linear baroclinic instability theory with the eddy statistics of a general circulation model. J. Atmos. Sci., 33, 349-373, https://doi.org/10.1175/1520-0469(1976)033<0349:ACOLBI>2.0.CO;2
Geisler J. E.,R. R. Garcia, 1977: Baroclinic instability at long wavelengths on a β-plane. J. Atmos. Sci., 34, 311-321, https://doi.org/10.1175/1520-0469(1977)034<0311:BIALWO>2.0.CO;2
Gill A. E.,1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.
Green J. S. A.,1960: A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237-251, https://doi.org/10.1002/qj.49708636813
Green J. S. A.,1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157-185, https://doi.org/10.1002/qj.49709640802
Harrison D. E.,A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows——Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185-211, https://doi.org/10.1016/0377-0265(78)90009-X
Held I. M.,1978: The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterizations. J. Atmos. Sci., 35, 572- 576, https://doi.org/10.1175/1520-0469(1978)035<0572:TVSOAU>2.0.CO;2
Holopainen E. O.,1978: A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15, 125- 145.96b10683113a9f438fc2a4c4fae61cb7http://xueshurefer.baidu.com/nopagerefer?id=698a09b0087ea1211ec1b859ba533372http://xueshurefer.baidu.com/nopagerefer?id=698a09b0087ea1211ec1b859ba533372
Hoskins B. J.,P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 1854-1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2
Hoskins B. J.,M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946, https://doi.org/10.1002/qj.49711147002
Kao S.-K.,V. R. Taylor, 1964: Mean kinetic energies of eddy and mean currents in the atmosphere. J. Geophys. Res., 69, 1037-1049, https://doi.org/10.1029/JZ069i006p01037
Kuo H.-L.,1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor., 6, 105-122,https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
Kuo H.-L.,1952: Three-dimensional disturbances in a baroclinic zonal current. J. Meteor., 9, 260-278, https://doi.org/10.1175/1520-0469(1952)009<0260:TDDIAB>2.0.CO;2
Kuo H.-L.,1979: Baroclinic instabilities of linear and jet profiles in the atmosphere. J. Atmos. Sci., 36, 2360-2378, https://doi.org/10.1175/1520-0469(1979)036<2360:BIOLAJ>2.0.CO;2
Lapeyre G.,P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165-176, https://doi.org/10.1175/JPO2840.1
Liang X. S.,2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 4439-4468, https://doi.org/10.1175/JAS-D-16-0131.1
Liang X. S.,A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195-230, https://doi.org/10.1016/j.dynatmoce.2004.12.004
Liang X. S.,D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437- 467.10.1137/06066895Xhttp://epubs.siam.org/doi/10.1137/06066895X
Liang X. S.,A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 51-76, https://doi.org/10.1016/j.dynatmoce.2007.04.001
Liang X. S.,L. Wang, 2018: The cyclogenesis and decay of typhoon damrey. Coastal Environment, Disaster, and Infrastructure, X. S. Liang and Y.Z. Zhang, Eds., IntechOpen, https://doi.org/10.5772/intechopen.80018
Lindzen R. S.,B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648-1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2
Lorenz E. N.,1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157-167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x
Lorenz E. N.,1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.
McWilliams J. C.,J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 2523-2540, https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
Miles J. W.,1964: A note on Charney's model of zonal-wind instability. J. Atmos. Sci., 21, 451-452, https://doi.org/10.1175/1520-0469(1964)021<0451:ANOCMO>2.0.CO;2
Nakamura H.,1992: Midwinter suppression of baroclinic wave activity in the pacific. J. Atmos. Sci., 49, 1629-1642, https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2
Orlanski I.,J. Katzfey, 1991: The life cycle of a cyclone wave in the southern hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 1972-1998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2
Pedlosky J.,1987: Geophysical Fluid Dynamics. 2nd ed., Springer-Verlag, 710 pp.
Pierrehumbert R. T.,K. L. Swanson, 1995: Baroclinic instability. Annual Review of Fluid Mechanics, 27, 419-467, https://doi.org/10.1146/annurev.fl.27.010195.002223
Plumb R. A.,1983: A new look at the energy cycle. J. Atmos. Sci., 40, 1669-1688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2
Pope S. B.,2000: Turbulent flows. Cambridge University Press, 806 pp.
Ragone F.,G. Badin, 2016: A study of surface semi-geostrophic turbulence: Freely decaying dynamics. J. Fluid Mech., 792, 740-774, https://doi.org/10.1017/jfm.2016.116
Simmons A. J.,B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414-432, https://doi.org/10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2
Simons T. J.,1972: The nonlinear dynamics of cyclone waves. J. Atmos. Sci., 29, 38-52, https://doi.org/10.1175/1520-0469(1972)029<0038:TNDOCW>2.0.CO;2
Song R. T.,1971: A numerical study of the three-dimensional structure and energetics of unstable disturbances in zonal currents: Part II. J. Atmos. Sci., 28, 565-586, https://doi.org/10.1175/1520-0469(1971)028<0565:ANSOTT>2.0.CO;2
Trenberth K. E.,1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci., 43, 2070-2087, https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2
Vallis G. K.,2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 770 pp.
Yin J. H.,2002: The peculiar behavior of baroclinic waves during the midwinter suppression of the pacific storm track. PhD dissertation, University of Washington, 137 pp.
Zhao Y.-B.,X. S. Liang, 2018: On the inverse relationship between the boreal wintertime Pacific jet strength and storm-track intensity. J. Climate, 31, 9545-9564, https://doi.org/10.1175/JCLI-D-18-0043.1
Zhao Y.-B.,X. S. Liang, and J. P. Gan, 2016: Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait. J. Geophys. Res. Oceans, 121, 8208-8229, https://doi.org/10.1002/2016JC012483
Zhao Y.-B.,X. S. Liang, and W. J. Zhu, 2018: Differences in storm structure and internal dynamics of the two storm source regions over East Asia. Acta Meteorologica Sinica, 76(5), 663-679, http://dx.doi.org/10.11676/qxxb2018.033