Akaike H.,1974: A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723, https://doi.org/10.1109/TAC.1974.1100705
Bahn M.,M. Knapp, Z. Garajova, N. Pfahringer, and A. Cernusca, 2006: Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12(6), 995-1006, https://doi.org/10.1111/j.1365-2486.2006.01144.x
Bahn, M., Coauthors, 2008: Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8), 1352-1367, https://doi.org/10.1007/s10021-008-9198-0
Bahn M.,M. Schmitt, R. Siegwolf, A. Richter, and N. Brüggemann, 2009: Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182(3), 451-460, https://doi.org/10.1111/j.1469-8137.2008.02755.x
Baldocchi D.,2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-492, https://doi.org/10.1046/j.1365-2486.2003.00629.x
Baldocchi D.,2008: `Breathing' of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(2), 1-26, https://doi.org/10.1071/BT07151
Baldocchi, D., Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82(11), 2415-2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
Baldocchi D.,C. Sturtevant, and F. Contributors, 2015: Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration? Agricultural and Forest Meteorology, 207, 117-126, https://doi.org/10.1016/j.agrformet.2015.03.010
Baldocchi D.,H. Chu, and M. Reichstein, 2018: Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 249, 520-533, http://doi.org/10.1016/j.agrformet.2017.05.015
Ballantyne, A., Coauthors, 2017: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change, 7, 148-152, https://doi.org/10.1038/nclimate3204
Beer, C., Coauthors, 2010: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993), 834-838, https://doi.org/10.1126/science.1184984
Beringer J.,S. J. Livesley, J. Rand le, and L. B. Hutley, 2013: Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet-dry tropics of northern Australia. Agricultural and Forest Meteorology, 182-183, 239-247, https://doi.org/10.1016/j.agrformet.2013.06.008
Bond-Lamberty B.,A. Thomson, 2010: Temperature-associated increases in the global soil respiration record. Nature, 464(7288), 579-582, https://doi.org/10.1038/nature08930
Bridgham S. D.,J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin, 2006: The carbon balance of North American wetlands. Wetlands, 26(4), 889-916, https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2
Cameron A. C.,J. B. Gelbach, and D. L. Miller, 2008: Bootstrap-based improvements for inference with clustered errors. Review of Economics and Statistics, 90(3), 414-427, https://doi.org/10.1162/rest.90.3.414
Canadell, J. G.,Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18 866-18 870, https://doi.org/10.1073/pnas.0702737104
Chen S. T.,J. W. Zou, Z. H. Hu, H. S. Chen, and Y. Y. Lu, 2014: Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 198-199, 335-346, https://doi.org/10.1016/j.agrformet.2014.08.020
Chen, Z., Coauthors, 2013: Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agricultural and Forest Meteorology, 182-183, 266-276, https://doi.org/10.1016/j.agrformet.2013.04.026
Chen Z.,G. R. Yu, X. J. Zhu, Q. F. Wang, S. L. Niu, and Z. M. Hu, 2015: Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 203, 180-190, https://doi.org/10.1016/j.agrformet.2015.01.012
Chen Z.,G. R. Yu, and Q. F. Wang, 2019: Magnitude, pattern and controls of carbon flux and carbon use efficiency in China's typical forests. Global and Planetary Change, 172, 464-473, https://doi.org/10.1016/j.gloplacha.2018.11.004
Davidson E. A.,L. V. Verchot, J. Henrique Cattânio, I. L. Ackerman, and J. E. M. Carvalho, 2000: Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69, https://doi.org/10.1023/A:1006204113917
de Dios, V. R.,Coauthors, 2012: Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Global Change Biology, 18(6), 1956-1970, https://doi.org/10.1111/j.1365-2486.2012.02664.x
Exbrayat J.-F.,A. J. Pitman, Q. Zhang, G. Abramowitz, and Y.-P. Wang, 2013: Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences, 10(11), 7095-7108, https://doi.org/10.5194/bg-10-7095-2013
Flanagan L. B.,B. G. Johnson, 2005: Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130(3-4), 237-253, https://doi.org/10.1016/j.agrformet.2005.04.002
Flanagan L. B.,L. A. Wever, and P. J. Carlson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8(7), 599-615, https://doi.org/10.1046/j.1365-2486.2002.00491.x
Friedlingstein, P., Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337-3353, https://doi.org/10.1175/JCLI3800.1
Hao Y. B.,X. Y. Cui, Y. F. Wang, X. R. Mei, X. M. Kang, N. Wu, P. Luo, and D. Zhu, 2011: Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of southwest China. Wetlands, 31, 413-422, https://doi.org/10.1007/s13157-011-0151-1
Hirano T.,H. Segah, T. Harada, S. Limin, T. June, R. Hirata, and M. Osaki, 2007: Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13(3), 412-425, https://doi.org/10.1111/j.1365-2486.2006.01301.x
Houghton R. A.,2007: Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313-347, https://doi.org/10.1146/annurev.earth.35.031306.140057
Hursh A.,A. Ballantyne, L. Cooper, M. Maneta, J. Kimball, and J. Watts, 2017: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 23, 2090-2103, https://doi.org/10.1111/gcb.13489
IPCC (Intergovernmental Panel on Climate Change), 2013: Climate Change 2013: The Physical Science. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., eds., Cambridge University Press, Cambridge, UK, 130-194, 1257- 1258.
Janssen P. H. M.,P. S. C. Heuberger, 1995: Calibration of process-oriented models. Ecological Modelling, 83(1-2), 55-66, https://doi.org/10.1016/0304-3800(95)00084-9
Janssens, I. A.,Coauthors, 2001: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7(3), 269-278, https://doi.org/10.1046/j.1365-2486.2001.00412.x
Jung, M., Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116(G3), G00J07, https://doi.org/10.1029/2010JG001566
Jung, M., Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541(7638), 516-520, https://doi.org/10.1038/nature20780
Kato T.,Y. H. Tang, 2008: Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: Evidence from eddy covariance data. Global Change Biology, 14(10), 2333-2348, https://doi.org/10.1111/j.1365-2486.2008.01646.x
Keenan T. F.,D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson, 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-327, https://doi.org/10.1038/nature12291
Knox S. H.,C. Sturtevant, J. H. Matthes, L. Koteen, J. Verfaillie, and D. Baldocchi, 2015: Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology, 21(3), 750-765, https://doi.org/10.1111/gcb.12745
Larsen K. S.,A. Ibrom, C. Beier, S. Jonasson, and A. Michelsen, 2007: Ecosystem respiration depends strongly on photosynthesis in a temperate heath. Biogeochemistry, 85(3), 201-213, https://doi.org/10.1007/s10533-007-9129-8
Lasslop G.,M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt, 2010: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(2), 187-208, https://doi.org/10.1111/j.1365-2486.2009.02041.x
Law B. E.,P. E. Thornton, J. Irvine, P. M. Anthoni, and S. Van Tuyl, 2001: Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology, 7(7), 755-777, https://doi.org/10.1046/j.1354-1013.2001.00439.x
Law, B. E.,Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113(1-4), 97-120, https://doi.org/10.1016/S0168-1923(02)00104-1
Liu B. H.,M. Henderson, Y. D. Zhang, and M. Xu, 2010: Spatiotemporal change in China's climatic growing season: 1955-2000. Climatic Change, 99(1-2), 93-118, https://doi.org/10.1007/s10584-009-9662-7
Lloyd J.,J. A. Taylor, 1994: On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323, https://doi.org/10.2307/2389824
Lu W. Z.,J. F. Xiao, F. Liu, Y. Zhang, C. A. Liu, and G. H. Lin, 2017: Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23(3), 1180-1198, https://doi.org/10.1111/gcb.13424
Luyssaert, S., Coauthors, 2007: CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509-2537, https://doi.org/10.1111/j.1365-2486.2007.01439.x
Mahecha, M. D.,Coauthors, 2010: Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993), 838-840, https://doi.org/10.1126/science.1189587
Massman W. J.,X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121-144, https://doi.org/10.1016/S0168-1923(02)00105-3
McGuire, A. D.,Coauthors, 2000: Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes. Biogeochemistry, 48, 91-114, https://doi.org/10.1023/A:1006286804351
Migliavacca, M., Coauthors, 2011: Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 17(2), 390-409, https://doi.org/10.1111/j.1365-2486.2010.02243.x
Ngeticha K. F., M. Mucheru-Muna, J. N. Mugwe, C. A. Shisanya, J. Diels, D. N. Mugendi, 2014: Length of growing season, rainfall temporal distribution, onset and cessation dates in the Kenyan highlands. Agricultural and Forest Meteorology, 188, 24-32, https://doi.org/10.1016/j.agrformet.2013.12.011
Nishimura S.,S. Yonemura, T. Sawamoto, Y. Shirato, H. Akiyama, S. Sudo, and K. Yagi, 2008: Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agriculture, Ecosystems & Environment, 125, 9-20, https://doi.org/10.1016/j.agee.2007.11.003
Petrescu, A. M. R.,Coauthors, 2015: The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4594-4599, https://doi.org/10.1073/pnas.1416267112
Raich J. W.,C. S. Potter, and D. Bhagawati, 2002: Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8(8), 800-812. https://doi.org/10.1046/j.1365-2486.2002.00511.x
Reichstein, M., Coauthors, 2003: Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17(4), 1104, https://doi.org/10.1029/2003GB002035
Reichstein, M., Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424-1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x
Reichstein, M., Coauthors, 2007: Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett., 34, L01402, https://doi.org/10.1029/2006GL027880
Reichstein, M., Coauthors, 2013: Climate extremes and the carbon cycle. Nature, 500(7462), 287-295, https://doi.org/10.1038/nature12350
Restrepo-Coupe, N., Coauthors, 2013: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182-183, 128-144, https://doi.org/10.1016/j.agrformet.2013.04.031
Richardson A. D.,D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H. Braswell, 2007: Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Global Change Biology, 13(4), 788-803, https://doi.org/10.1111/j.1365-2486.2007.01330.x
Rubel F.,M. Kottek, 2010: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteor. Z., 19(3), 135-141, https://doi.org/10.1127/0941-2948/2010/0430
Saigusa N.,T. Oikawa, and S. Liu, 1998: Seasonal variations of the exchange of CO2 and H2O between a grassland and the atmosphere: An experimental study. Agricultural and Forest Meteorology, 89(3), 131-139, https://doi.org/10.1016/S0168-1923(97)00060-9
Saitoh T. M.,T. Kumagai, Y. Sato, and M. Suzuki, 2005: Carbon dioxide exchange over a Bornean tropical rainforest. J. Agric. Meteor., 60, 553- 556.10.2480/agrmet.553https://www.jstage.jst.go.jp/article/agrmet/60/5/60_553/_article
Schmitt M.,M. Bahn, G. Wohlfahrt, U. Tappeiner, and A. Cernusca, 2010: Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences, 7(8), 2297-2309, https://doi.org/10.5194/bg-7-2297-2010
Shao, J. J.,Coauthors, 2015: Biotic and climatic controls on interannual variability in carbon fluxes across terrestrial ecosystems. Agricultural and Forest Meteorology, 205, 11-22, https://doi.org/10.1016/j.agrformet.2015.02.007
Stoy, P. C.,Coauthors, 2009: Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences, 6(10), 2297-2312, https://doi.org/10.5194/bg-6-2297-2009
Tappeiner U.,A. Cernusca, 1996: Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus. Plant, Cell & Environment, 19(4), 403-417, https://doi.org/10.1111/j.1365-3040.1996.tb00332.x
Trumbore S.,2006. Carbon respired by terrestrial ecosystems —— recent progress and challenges. Global Change Biology, 12(3), 141-153, https://doi.org/10.1111/j.1365-2486.2006.01067.x
Turetsky, M. R.,Coauthors, 2014: A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20(7), 2183-2197, https://doi.org/10.1111/gcb.12580
Valentini, R., Coauthors, 2000: Respiration as the main determinant of carbon balance in European forests. Nature, 404(6780), 861-865, https://doi.org/10.1038/35009084
Wang X. C.,C. K. Wang, and B. Bond-Lamberty, 2017: Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agricultural and Forest Meteorology, 247, 93-103, https://doi.org/10.1016/j.agrformet.2017.07.023
Wang Y. P.,C. M. Trudinger, and I. G. Enting, 2009: A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. Agricultural and Forest Meteorology, 149(11), 1829-1842, https://doi.org/10.1016/j.agrformet.2009.07.009
Wu, J., Coauthors, 2016: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351(6276), 972-976, https://doi.org/10.1126/science.aad5068
Xiao, J. F.,Coauthors, 2013: Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 182-183, 76-90, https://doi.org/10.1016/j.agrformet.2013.08.007
Xu B.,Y. H. Yang, P. Li, H. H. Shen, and J. Y. Fang, 2014: Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Global Biogeochemical Cycles, 28(9), 962-973, https://doi.org/10.1002/2013GB004593
Yi, C. X.,Coauthors, 2010: Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 5, 031007, https://doi.org/10.1088/1748-9326/5/3/034007
Yu, G. R.,Coauthors, 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19(3), 798-810, https://doi.org/10.1111/gcb.12079
Yuan, W. P.,Coauthors, 2009: Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 15(12), 2905-2920, https://doi.org/10.1111/j.1365-2486.2009.01870.x
Zhang, X. Z.,Coauthors, 2018: Dominant regions and drivers of the variability of the global land carbon sink across timescales. Global Change Biology, 24(9), 3954-3968, https://doi.org/10.1111/gcb.14275