Bao, Q., Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561-576, https://doi.org/10.1007/s00376-012-2113-9
Barker H. W.,G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127-2152, https://doi.org/10.1002/qj.49712555810
Bauer P.,A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47-55, https://doi.org/10.1038/nature14956
Bermejo R.,J. Conde, 2002: A conservative quasi-monotone semi-lagrangian scheme. Mon. Wea. Rev., 130, 423-430, https://doi.org/10.1175/1520-0493(2002)130<0423:ACQMSL>2.0.CO;2
Bleck R.,1974: Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Mon. Wea. Rev., 102, 813-829, https://doi.org/10.1175/1520-0493(1974)102<0813:SRPIIC>2.0.CO;2
Casati, B., Coauthors, 2008: Forecast verification: Current status and future directions. Meteorological Applications, 15, 3-18, https://doi.org/10.1002/met.52
Chen B. D.,X. F. Wang, H. Li, and L. Zhang, 2013: An overview of the key techniques in rapid refresh assimilation and forecast. Advances in Meteorological Science and Technology, 3(2), 29-35, https://doi.org/10.3969/j.issn.2095-1973.2013.02.003
Chen C. G.,J. Z. Bin, and F. Xiao, 2012: A global multimoment constrained finite-volume scheme for advection transport on the hexagonal geodesic grid. Mon. Wea. Rev., 140, 941-955, https://doi.org/10.1175/MWR-D-11-00095.1
Chen C. G.,X. L. Li, X. S. Shen, and F. Xiao, 2014: Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys., 271, 191-223, https://doi.org/10.1016/j.jcp.2013.10.026
Chen H. M.,R. C. Yu, and Y. Shen, 2016a: A new method to compare hourly rainfall between station observations and satellite products over central-eastern China. J. Meteor. Res., 30, 737-757, https://doi.org/10.1007/s13351-016-6002-5
Chen J.,Z. S. Ma, and Y. Su, 2017: Boundary layer coupling to Charney-Phillips vertical grid in GRAPES model. Journal of Applied Meteorological Science, 28, 52-61, https://doi.org/10.11898/1001-7313.20170105
Chen K. Y.,N. Bormann, S. English, and J. Zhu, 2018: Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land. Adv. Atmos. Sci., 35, 268-275, https://doi.org/10.1007/s00376-017-7088-0
Chen M. X.,F. Gao, J. Z. Sun, X. Xiao, L. Liu, and Y. C. Wang, 2016b: An analysis system using rapid-updating 4-D Variational radar data assimilation based on VDRAS. Journal of Applied Meteorological Science, 27(3), 257-272, https://doi.org/10.11898/1001-7313.20160301
Chen Q. Y.,X. S. Shen, J. Sun, and K. Liu, 2016c: Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES. J. Meteor. Res., 30, 771-788, https://doi.org/10.1007/s13351-016-6033-y
Chen, Y. D.,Coauthors, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. Journal of Applied Meteorology and Climatology, 54, 1809-1825, https://doi.org/10.1175/JAMC-D-14-0243.1
Cheng R.,R. C. Yu, Y. P. Xu, and B. Wang, 2018: Design of non-hydrostatic AREM model and its numerical simulation Part I: Design of non-hydrostatic dynamic core. Chinese Journal of Atmospheric Sciences, 42(6), 1286-1296, https://doi.org/10.3878/j.issn.1006-9895.1712.17200
Chou J. F.,Z. D. Zhou, and X. Y. Du, 1963: A new computational scheme for a barotropic prediction model. Acta Meteorologica Sinica, 33, 484-493, https://doi.org/10.11676/qxxb1963.051
Dong L.,B. Wang, 2012: Trajectory-tracking scheme in lagrangian form for solving linear advection problems: Preliminary tests. Mon. Wea. Rev., 140, 650-663, https://doi.org/10.1175/MWR-D-10-05026.1
Dong L.,B. Wang, and L. Liu, 2014: A Lagrangian advection scheme with shape matrix (LASM) for solving advection problems. Geoscientific Model Development, 7, 2951-2968, https://doi.org/10.5194/gmd-7-2951-2014
Dong L.,B. Wang, L. Liu, and Y. Huang, 2015: Lagrangian advection scheme with shape matrix (LASM) v0.2: Interparcel mixing, physics-dynamics coupling and 3-D extension. Geoscientific Model Development, 8, 2675-2686, https://doi.org/10.5194/gmd-8-2675-2015
Gao W. H.,F. S. Zhao, Z. J. Hu, and X. Feng, 2011: A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results. Adv. Atmos. Sci., 28, 1184-1200, https://doi.org/10.1007/s00376-010-0087-z
Giorgetta, M. A.,Coauthors, 2018: ICON-A, the atmosphere component of the ICON earth system model: I. Model description. Journal of Advances in Modeling Earth Systems, 10, 1613-1637, https://doi.org/10.1029/2017MS001233
Grabowski W. W.,P. K. Smolarkiewicz, 1999: CRCP: A Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D: Nonlinear Phenomena, 133, 282-178, https://doi.org/10.1016/S0167-2789(99)00104-9
Gross, M., Coauthors, 2018: Physics-dynamics coupling in weather, climate, and earth system models: Challenges and recent progress. Mon. Wea. Rev., 146, 3505-3544, https://doi.org/10.1175/MWR-D-17-0345.1
Gu Z. C.,J. P. Chao, and Z. Qu, 1957: A test for 24 and 48-HR numerical forecasting with a quasi-geostophic two-parameter model. Acta Meteorologica Sinica, 28, 41-62, https://doi.org/10.11676/qxxb1957.004
Guo, Z., Coauthors, 2014: A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 6, 829-858, https://doi.org/10.1002/2014MS000315
Guo, Z., Coauthors, 2015: Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, 7, 1005-1025, https://doi.org/10.1002/2014MS000405
Gustafsson N.,2007: Discussion on `4D-Var or EnKF?'. Tellus A: Dynamic Meteorology and Oceanography, 59, 774-777, https://doi.org/10.1111/j.1600-0870.2007.00262.x
Gustafsson, N., Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 1218-1256, https://doi.org/10.1002/qj.3179
Han W.,N. Bormann, 2016: Constrained adaptive bias correction for satellite radiances assimilation in the ECMWF 4D-Var. EGU General Assembly 2016, Washington, EGU, 783.a05a5da30e4b6a701390f008a392dd3fhttp%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F2016EGUGA..1816979H
Hao M.,Z. F. Xu, S. W. Tao, L. J. Zhu, Y. Wang, and J. D. Gong, 2011: Simulation study and application experiment of GRAPES RUC system. Plateau Meteorology, 30, 1573- 1583. (in Chinese with English abstract)8bdf2a48df48b474391ebdaae18ccf2dhttp%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-GYQX201106016.htm
He W. Y.,Z. Q. Liu, and H. B. Chen, 2011: Influence of surface temperature and emissivity on AMSU-A assimilation over land. Acta Meteorologica Sinica, 25, 545-557, https://doi.org/10.1007/s13351-011-0501-1
Heikes R.,D. A. Randall, 1995: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 1862-1880, https://doi.org/10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
Houtekamer P. L.,F. Q. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 4489-4532, https://doi.org/10.1175/MWR-D-15-0440.1
Huang L. P.,D. H. Chen, L. T. Deng, Z. F. Xu, F. Yu, Y. Jiang, and F. F. Zhou, 2017: Main technical improvements of GRAPES_Meso V4.0 and verfication. Journal of Applied Meteorological Science, 28(1), 25-37, https://doi.org/10.11898/1001-7313.20170103
Huang W.,J.-W. Bao, and B. D. Chen, 2014: Parameterization of subgrid deep convective cloud at gray-zone resolutions: Preliminary results. Tropical Cyclone Research and Review, 3, 218-228, https://doi.org/10.6057/2014TCRR04.02
Huang W.,J. W. Bao, X. Zhang, and B. D. Chen, 2018: Comparison of the vertical distributions of cloud properties from idealized extratropical deep convection simulations using various horizontal resolutions. Mon. Wea. Rev., 146, 833-851, https://doi.org/10.1175/MWR-D-17-0162.1
Huo Z. H.,J. Chen, X. L. Li, Y. Z. Liu, L. Zhang, B. Zhao, F. Peng, and H. Tian, 2018: Dynamical upscaling technique for initial fields of grapes operational global ensemble control forecast. Meteorological Science and Technology, 46, 707-717, https://doi.org/10.19517/j.1671-6345.20170311
Ii S.,F. Xiao, 2007: CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation. J. Comput. Phys., 222, 849-871, https://doi.org/10.1016/j.jcp.2006.08.015
Ji, D., Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geoscientific Model Development, 7, 2039-2064, https://doi.org/10.5194/gmd-7-2039-2014
Jie W. H.,F. Vitart, T. W. Wu, and X. W. Liu, 2017: Simulations of the Asian summer monsoon in the sub-seasonal to seasonal prediction project (S2S) database. Quart. J. Roy. Meteor. Soc., 143, 2282-2295, https://doi.org/10.1002/qj.3085
Jung, T., Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. ECMWF Technical Report.84bcbe5c7e58c595067035d7fa73ab8bhttp%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fqj.634%2Ffull
Kageyama A.,T. Sato, 2004: "Yin-Yang grid": An overset grid in spherical geometry. Geochemistry, Geophysics, Geosystems, 5, Q09005, https://doi.org/10.1029/2004GC000734
Kalnay E.,H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-Poy, 2007: 4-D-Var or ensemble Kalman filter? Tellus A: Dynamic Meteorology and Oceanography, 59, 758-773, https://doi.org/10.1111/j.1600-0870.2007.00261.x
Kang J. Q.,J. J. Wang, L. P. Huang, and Z. W. Wan, 2016: An improvement on the radiation effects of shallow convective clouds in GRAPES-Meso mode. Acta Meteorologica Sinica, 74, 715-732, https://doi.org/10.11676/qxxb2016.061
Khairoutdinov M. F.,D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 3617-3620, https://doi.org/10.1029/2001GL013552
Klemp J. B.,2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 2163-2169, https://doi.org/10.1175/MWR-D-10-05046.1
Laprise R.,1992: The euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120, 197-207, https://doi.org/10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
Lei L. L.,J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 2605-2621, https://doi.org/10.1175/MWR-D-15-0246.1
Lei L. L.,J. S. Whitaker, 2017: Evaluating the trade-offs between ensemble size and ensemble resolution in an ensemble-variational data assimilation system. Journal of Advances in Modeling Earth Systems, 9, 781-789, https://doi.org/10.1002/2016MS000864
Lei L. L.,J. S. Whitaker, and C. Bishop, 2018: Improving assimilation of radiance observations by implementing model space localization in an ensemble kalman filter. Journal of Advances in Modeling Earth Systems, 10, 3221-3232, https://doi.org/10.1029/2018MS001468
Leonard B. P.,A. P. Lock, and M. K. MacVean, 1996: Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon. Wea. Rev., 124, 2588-2606, https://doi.org/10.1175/1520-0493(1996)124<2588:CEUTSM>2.0.CO;2
Li C.,D. H. Chen, and X. L. Li, 2012: A design of height-based terrain-following coordinates in the atmospheric numerical model: Theoretical analysis and idealized tests. Acta Meteorologica Sinica, 70, 1247-1259, https://doi.org/10.11676/qxxb2012.105
Li J.,X. L. Zou, 2014: Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Frontiers of Earth Science, 8(2), 251-263, https://doi.org/10.1007/s11707-014-0405-3
Li J.,R. C. Yu, 2014: A method to linearly evaluate rainfall frequency-intensity distribution. Journal of Applied Meteorology and Climatology, 53, 928-934, https://doi.org/10.1175/JAMC-D-13-0272.1
Li J.,G. Q. Liu, 2016: Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmospheric Measurement Techniques, 9(7), 3095-3113, https://doi.org/10.5194/amt-9-3095-2016
Li J.,R. C. Yu, W. H. Yuan, H. M. Chen, W. Sun, and Y. Zhang, 2015a: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems, 7, 774-790, https://doi.org/10.1002/2014MS000414
Li J.,P. Wang, H. Han, J. L. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteor. Res., 30, 169-182, https://doi.org/10.1007/s13351-016-5114-2
Li J.,B. D. Chen, W. Huang, and X. Zhang, 2017: Cloud physics initialization for convection-scale NWP: Scheme improvements and a case study. Acta Meteorologica Sinica, 75(5), 771-783, https://doi.org/10.11676/qxxb2017.059
Li J.,H. M. Chen, X. Y. Rong, J. Z. Su, Y. F. Xin, K. Furtado, S. Milton, and N. N. Li, 2018: How well can a climate model simulate an extreme precipitation event: A case study using the transpose-AMIP experiment. J. Climate, 31, 6543-6556, https://doi.org/10.1175/JCLI-D-17-0801.1
Li, L. J.,Coauthors, 2013a: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543-560, https://doi.org/10.1007/s00376-012-2140-6
Li L. J.,B. Wang, and G. J. Zhang, 2014a: The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El NiÑo warming. J. Climate, 27, 6721-6736, https://doi.org/10.1175/JCLI-D-13-00632.1
Li X. H.,X. D. Peng, 2018: Long-term integration of a global non-hydrostatic atmospheric model on an aqua planet. J. Meteor. Res., 32, 517-533, .https://doi.org/10.1007/s13351-018-8016-7
Li X. H.,X. D. Peng, and X. L. Li, 2015b: An improved dynamic core for a non-hydrostatic model system on the Yin-Yang Grid. Adv. Atmos. Sci., 32, 648-658, https://doi.org/10.1007/s00376-014-4120-5
Li X. L.,X. S. Shen, X. D. Peng, F. Xiao, Z. R. Zhuang, and C. G. Chen, 2013b: An accurate multimoment constrained finite volume transport model on Yin-Yang grids. Adv. Atmos. Sci., 30, 1320-1330, https://doi.org/10.1007/s00376-013-2217-x
Li X. L.,C. G. Chen, X. S. Shen, and F. Xiao, 2013c: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216-1240, https://doi.org/10.1175/MWR-D-12-00144.1
Li X. L.,C. G. Chen, F. Xiao, and X. S. Shen, 2015c: A high-order multi-moment constrained finite-volume global shallow-water model on the Yin-Yang grid. Quart. J. Roy. Meteor. Soc., 141, 2090-2102, https://doi.org/10.1002/qj.2504
Li Y.,B. Wang, D. Wang, J. Li, and L. Dong, 2014b: An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments. Geoscientific Model Development, 7, 1767-1778, https://doi.org/10.5194/gmd-7-1767-2014
Li Z. C.,1994: Medium-range numerical weather prediction system at the national meteorological center of China. Acta Meteorologica Sinica, 52, 297-307, https://doi.org/10.11676/qxxb1994.038
Liao D. X.,1958: A simple two-layer model and its extension. Acta Meteorologica Sinica, 29, 162-175, https://doi.org/10.11676/qxxb1958.018
Lin S.-J.,R. B. Rood, 1996: Multidimensional flux-form semi-lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070,https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2
Lin Y. L.,B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 1013-1035, https://doi.org/10.1175/2010MWR3293.1
Liou K. N.,2002: An Introduction to Atmospheric Radiation. 2nd ed. Academic Press.4f489c612cbb6137a628744ec8fae96bhttp%3A%2F%2Fadsabs.harvard.edu%2Fabs%2F1981PhT....34g..66L
Liu K.,Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806-822, https://doi.org/10.1007/s13351-015-5043-5
Liu, X. W.,Coauthors, 2017a: MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center. Climate Dyn., 48, 3283-3307, https://doi.org/10.1007/s00382-016-3264-7
Liu Y.,J. S. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28(6), 1061-1074, https://doi.org/10.1007/s13351-014-4028-0
Liu Y.,J. S. Xue, L. Zhang, and H. J. Lu, 2016: Verification and diagnostics for data assimilation system of global GRAPES. Journal of Applied Meteorological Science, 27, 1-15, https://doi.org/10.11898/1001-7313.20160101
Liu Y. Z.,X. S. Shen, and X. L. Li, 2013a: Researeh on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteorological Sinica, 71(3), 517-526, https://doi.org/10.11676/qxxb2013.043
Liu Y. Z.,L. Zhang, and Z. Y. Jin, 2017b: The optimization of GRAPES global tangent linear model and adjoint model. Journal of Applied Meteorological Science, 28, 62-71, https://doi.org/10.11898/1001-7313.20170106
Liu Y. Z.,L. Zhang, and Z. H. Lian, 2018: Conjugate gradient algorithm in the four-dimensional variational data assimilation system in GRAPES. J. Meteor. Res., 32, 974-984, https://doi.org/10.1007/s13351-018-8053-2
Liu Z. Y.,S. Wu, S. Q. Zhang, Y. Liu, and X. Y. Rong, 2013b: Ensemble data assimilation in a simple coupled climate model: The role of ocean-atmosphere interaction. Adv. Atmos. Sci., 30, 1235-1248, https://doi.org/10.1007/s00376-013-2268-z
Lu B.,J. S. Sun, J. Q. Zhong, Z. W. Wang, and S. Y. Fan, 2017: Analysis of characteristic bias in diurnal precipitation variation forecasts and possible reasons in a regional forecast system over Beijing area. Acta Meteorologica Sinica, 75, 248-259, https://doi.org/10.11676/qxxb2017.021
Lu C. S.,Y. G. Liu, G. J. Zhang, X. H. Wu, S. Endo, L. Cao, Y. Q. Li, and X. H. Guo, 2016: Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci., 73, 761-773, https://doi.org/10.1175/JAS-D-15-0050.1
Ma J. H.,Y. J. Zhu, R. Wobus, and P. X. Wang, 2012: An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Adv. Atmos. Sci., 29, 782-794, https://doi.org/10.1007/s00376-012-1249-y
Ma X. L.,Z. R. Zhuang, J. S. Xue, and W. S. Lu, 2009: Development of 3-D variational data assimilation system for the nonhydrostatic numerical weather prediction model-GRAPES. Acta Meteorologica Sinica, 67, 50-60, https://doi.org/10.11676/qxxb2009.006
Ma Z. S.,Q. J. Liu, C. F. Zhao, X. S. Shen, Y. Wang, J. H. Jiang, Z. Li, and Y. Yung, 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. Journal of Advances in Modeling Earth Systems, 10, 652-667, https://doi.org/10.1002/2017MS001234
Morrison H.,A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642-3659, https://doi.org/10.1175/2008JCLI2105.1
Pan L. J.,C. F. Xue, H. F. Zhang, J. P. Wang, and J. Yao, 2017: Comparison of three verification methods for high-resolution grid precipitation forecast. Climatic and Environmental Research, 22, 45-58, https://doi.org/10.3878/j.issn.1006-9585.2016.16012
Pan Y. J.,M. Xue, K. F. Zhu, and M. J. Wang, 2018: A prototype regional GSI-based EnKF-variational hybrid data assimilation system for the rapid refresh forecasting system: Dual-resolution implementation and testing results. Adv. Atmos. Sci., 35, 518-530, https://doi.org/10.1007/s00376-017-7108-0
Peng F.,X. L. Li, J. Chen, and H. Q. Li, 2019: A stochastic kinetic energy backscatter scheme for model perturbations in the GRAPES global ensemble prediction system. Acta Meteorologica Sinica, 77, 180-195, https://doi.org/10.11676/qxxb2019.009
Peng X. D.,F. Xiao, and K. Takahashi, 2007: Conservative constraint for a quasi-uniform overset grid on the sphere. Quart. J. Roy. Meteor. Soc., 132, 979-996, https://doi.org/10.1256/qj.05.18
Pincus R.,H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376, https://doi.org/10.1029/2002JD003322
Plant R. S.,G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105, https://doi.org/10.1175/2007JAS2263.1
Prein A. F.,R. Rasmussen, and G. Stephens, 2017: Challenges and advances in convection-permitting climate modeling. Bull. Amer. Meteor. Soc., 98, 1027-1030, https://doi.org/10.1175/BAMS-D-16-0263.1
Qian Y. F.,Z. Zhong, 1986: General forms of dynamic equations for atmosphere in numerical models with topography. Adv. Atmos. Sci., 3, 10-22, https://doi.org/10.1007/BF02680042
Qiao X. S.,S. Z. Wang, and J. Z. Min, 2017: A stochastic perturbed parameterization tendency scheme for diffusion (SPPTD) and its application to an idealized supercell simulation. Mon. Wea. Rev., 145, 2119-2139, https://doi.org/10.1175/MWR-D-16-0307.1
Qin Y.,Y. L. Lin, S. M. Xu, H. Y. Ma, and S. C. Xie, 2018: A diagnostic PDF cloud scheme to improve subtropical low clouds in NCAR community atmosphere model (CAM5). Journal of Advances in Modeling Earth Systems, 10, 320-341, https://doi.org/10.1002/2017MS001095
Qin Z. K.,X. L. Zou, and F. Z. Weng, 2013: Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev., 141, 75-92, https://doi.org/10.1175/MWR-D-12-00079.1
Rand all, D. A., R. Heikes, T. Ringer, 2000: Global atmospheric modeling using a geodesic grid with an isentropic vertical coordinate. International Geophysics, 70, 509-538, https://doi.org/10.1016/S0074-6142(00)80065-0
Ringler T.,L. L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475-498, https://doi.org/10.1007/s10236-008-0157-2
Rodwell M. J.,T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129-146, https://doi.org/10.1002/qj.23
Rong, X. Y.,Coauthors, 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839-861, https://doi.org/10.1007/s13351-018-8058-x
Shen X. S.,M. H. Wang, and F. Xiao, 2011: A study of the high-order accuracy and positive-definite conformal advection scheme in the GRAPES model I: Scientific design and idealized tests. Acta Meteorologica Sinica, 69, 1-15, https://doi.org/10.11676/qxxb2011.001
Shen, X. S.,Coauthors, 2017: Development and operation transformation of GRAPES global middle range forecast system. Journal of Applied Meteorological Science, 28, 1-10, https://doi.org/10.11898/1001-7313.20170101
Staniforth A.,J. Thuburn, 2012: Horizontal grids for global weather and climate prediction models: A review. Quart. J. Roy. Meteor. Soc., 138, 1-26, https://doi.org/10.1002/qj.958
Su Y.,X. S. Shen, X. D. Peng, X. L. Li, X. J. Wu, S. Zhang, and X. Chen, 2013: Application of PRM scalar advection scheme in GRAPES global forecast system. Chinese Journal of Atmospheric Sciences, 37, 1309-1325, https://doi.org/10.3878/j.issn.1006-9895.2013.12164
Tao S. Y.,S. W. Zhao, X. P. Zhou, L. R. Ji, S. Q. Sun, S. T. Gao, and Q. Y. Zhang, 2003: The research progress of the synoptic meteorology and synoptic forecast. Chinese Journal of Atmospheric Sciences, 27, 451-467, https://doi.org/10.3878/j.issn.1006-9895.2003.04.03
Taylor K. E.,2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmos., 106, 7183-7192, https://doi.org/10.1029/2000JD900719
Tian X. J.,X. B. Feng, 2015: A non-linear least squares enhanced POD-4DVar algorithm for data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 67, 25340, https://doi.org/10.3402/tellusa.v67.25340
Tian X. J.,H. Q. Zhang, X. B. Feng, and Y. F. Xie, 2018: Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: formulation, analysis, and preliminary evaluation. Mon. Wea. Rev., 146, 77-93, https://doi.org/10.1175/MWR-D-17-0050.1
Tiedtke M.,1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040-3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
Tomita H.,M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput. Phys., 174, 579-613, https://doi.org/10.1006/jcph.2001.6897
Vitart, F., Coauthors, 2017: The subseasonal to seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163-173, https://doi.org/10.1175/BAMS-D-16-0017.1
Wan Z. W.,J. J. Wang, L. P. Huang, and J. Q. Kang, 2015: An improvement of the shallow convection parameterization scheme in the GRAPES-Meso. Acta Meteorologica Sinica, 73, 1066-1079, https://doi.org/10.11676/qxxb2015.071
Wang H.,N. G. Wu, Q. L. Wan, and T. Zhan, 2018a: Analysis of S-band polarimetric radar observations of a hail-producing supercell. Acta Meteorologica Sinica, 76(1), 92-103, https://doi.org/10.11676/qxxb2017.083
Wang J. C.,J. D. Gong, and R. C. Wang, 2016: Estimation of background error for brightness temperature in GRAPES 3DVar and its application in radiance data background quality control. Acta Meteorologica Sinica, 74(3), 397-409, https://doi.org/10.11676/qxxb2016.026
Wang J. Z.,J. Chen, J. Du, Y. T. Zhang, Y. Xia, and G. Deng, 2018b: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781-796, https://doi.org/10.1175/MWR-D-17-0223.1
Wang, M., Coauthors, 2011a: The multi-scale aerosol-climate model PNNL-MMF: Model description and evaluation. Geoscientific Model Development, 4, 137-168, https://doi.org/10.5194/gmd-4-137-2011
Wang M. H.,X. S. Shen, and F. Xiao, 2011b: A study of the high-order accuracy and positive-definite conformal advection scheme in the GRAPES model II: Continuous actual rainfall prediction experiments. Acta Meteorologica Sinica, 69, 16-25, https://doi.org/10.11676/qxxb2011.002
Wang, M. H.,Coauthors, 2015a: A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations. Journal of Advances in Modeling Earth Systems, 7, 484-509, https://doi.org/10.1002/2014MS000375
Wang R. C.,J. D. Gong, and L. Zhang, 2012: Statistical estimation of dynamic balance constraints in GRAPES variational data assimilation system. Journal of Applied Meteorological Science, 23, 129-138, https://doi.org/10.3969/j.issn.1001-7313.2012.02.001
Wang R. C.,J. D. Gong, L. Zhang, and C. B. Xue, 2014: Numerical experiments on statistical estimation of dynamic balance constraints in GRAPES-3DVAR with whole layers of model atmosphere. Journal of Tropical Meteorology, 30, 633-642, https://doi.org/10.3969/j.issn.1004-4965.2014.04.004
Wang R. C.,J. D. Gong, L. Zhang, and H. J. Lu, 2015b: Tropical balance characteristics between mass and wind fields and their impact on analyses and forecasts in GRAPES system. Part II: Application of linear balance equation-regression hybrid constraint scheme. Chinese Journal of Atmospheric Sciences, 39, 1225-1236, https://doi.org/10.3878/j.issn.1006-9895.1412.14234
Wang S. Z.,X. S. Qiao, J. Z. Min, and X. R. Zhuang, 2019: The impact of stochastically perturbed parameterizations on tornadic supercell cases in East China. Mon. Wea. Rev., 147, 199-220, https://doi.org/10.1175/MWR-D-18-0182.1
Wang X. C.,M. H. Zhang, 2013: An analysis of parameterization interactions and sensitivity of single-column model simulations to convection schemes in CAM4 and CAM5. J. Geophys. Res.: Atmos., 118, 8869-8880, https://doi.org/10.1002/jgrd.50690
Wang X. C.,M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6, 478-489, https://doi.org/10.1002/2014MS000318
Wang X. C.,Y. M. Liu, Q. Bao, and G. X. Wu, 2015c: Comparisons of GCM cloud cover parameterizations with cloud-resolving model explicit simulations. Science China Earth Sciences, 58, 604-614, https://doi.org/10.1007/s11430-014-4989-y
Wang Y.,G. J. Zhang, 2016: Global climate impacts of stochastic deep convection parameterization in the NCARCAM5. Journal of Advances in Modeling Earth Systems, 8, 1641-1656, https://doi.org/10.1002/2016MS000756
Weller H.,J. Thuburn, and C. J. Cotter, 2012: Computational modes and grid imprinting on five quasi-uniform spherical C grids. Mon. Wea. Rev., 140, 2734-2755, https://doi.org/10.1175/MWR-D-11-00193.1
Wu G. X.,H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1-18, https://doi.org/10.1007/BF02657024
Wu T. W.,2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725-744, https://doi.org/10.1007/s00382-011-0995-3
Wu, T. W.,Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34-56, https://doi.org/10.1007/s13351-014-3041-7
Xia X. L.,J. Z. Min, F. F. Shen, Y. B. Wang, and C. Yang, 2019: Aerosol data assimilation using data from Fengyun-3A and MODIS: Application to a dust storm over East Asia in 2011. Adv. Atmos. Sci., 36, 1-14, https://doi.org/10.1007/s00376-018-8075-9
Xiao F.,A. Ikebata, 2003: An efficient method for capturing free boundaries in multi-fluid simulations. International Journal for Numerical Methods in Fluids, 42, 187-210, https://doi.org/10.1002/fld.499
Xu C. L.,J. J. Wang, and L. P. Huang, 2017a: Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteorologica Sinica, 75, 851-876, https://doi.org/10.11676/qxxb2017.068
Xu D. S.,Z. T. Chen, G. F. Dai, S. X. Zhong, and Z. L. Yang, 2014a: The influence of an improved cumulus parameterization scheme on typhoon forecast from GRAPES model. Journal of Tropical Meteorology, 30, 210-218, https://doi.org/10.3969/j.issn.1004-4965.2014.02.002
Xu D. S.,Z. T. Chen, S. X. Zhong, and G. F. Dai, 2014b: Study of the coupling of cumulus convection parameterization with cloud microphysics and its influence on forecast of typhoon. Acta Meteorologica Sinica, 72, 337-349, https://doi.org/10.11676/qxxb2014.017
Xu Z. F.,Z. L. Hou, Y. Han, and W. D. Guo, 2016: A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geoscientific Model Development, 9, 4365-4380, https://doi.org/10.5194/gmd-9-4365-2016
Xu Z. F.,Y. Han, and C. B. Fu, 2017b: Multivariable integrated evaluation of model performance with the vector field evaluation diagram. Geoscientific Model Development, 10, 3805-3820, https://doi.org/10.5194/gmd-10-3805-2017
Xue J. S.,2004: Progresses of researches on numerical weather prediction in China: 1999-2002. Adv. Atmos. Sci., 21, 467-474, https://doi.org/10.1007/BF02915573
Xue J. S.,Y. Liu, 2007: Numerical weather prediction in China in the new century -progress, problems and prospects. Adv. Atmos. Sci., 24, 1099-1108, https://doi.org/10.1007/s00376-007-1099-1
Xue M.,K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161-193, https://doi.org/10.1007/s007030070003
Yabe T.,F. Xiao, and T. Utsumi, 2001: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 169, 556-593, https://doi.org/10.1006/jcph.2000.6625
Yang B.,Y. Qian, G. Lin, R. Leung, and Y. Zhang, 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmospheric Chemistry And Physics, 12, 2409-2427, https://doi.org/10.5194/acp-12-2409-2012
Yang, B., Coauthors, 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res.: Atmos., 118, 395-415, https://doi.org/10.1029/2012JD018213
Yang C.,Z. Q. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Z. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 68, 30917, https://doi.org/10.3402/tellusa.v68.30917
Yang J. H.,J. Q. Song, J. P. Wu, K. J. Ren, and H. Z. Leng, 2015: A high-order vertical discretization method for a semi-implicit mass-based non-hydrostatic kernel. Quart. J. Roy. Meteor. Soc., 141, 2880-2885, https://doi.org/10.1002/qj.2573
Yang J. H.,J. Q. Song, J. P. Wu, F. K. Ying, J. Peng, and H. Z. Leng, 2017: A semi-implicit deep-atmosphere spectral dynamical kernel using a hydrostatic-pressure coordinate. Quart. J. Roy. Meteor. Soc., 143, 2703-2713, https://doi.org/10.1002/qj.3119
Yu R. C.,1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11(4), 479-490, https://doi.org/10.1007/BF02658169
Yu R. C.,Y. P. Xu, 2004: AREM and its simulations on the daily rainfall in summer in 2003. Acta Meteorologica Sinica, 62, 715-723, https://doi.org/10.11676/qxxb2004.068
Yu R. C.,J. Li, H. M. Chen, and W. H. Yuan, 2014: Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteor. Res., 28, 877-902, https://doi.org/10.1007/s13351-014-3272-7
Yu R. C.,H. M. Chen, and W. Sun, 2015a: The definition and characteristics of regional rainfall events demonstrated by warm season precipitation over the Beijing Plain. Journal of Hydrometeorology, 16, 396-406, https://doi.org/10.1175/JHM-D-14-0086.1
Yu R. C.,J. Li, Y. Zhang, and H. M. Chen, 2015b: Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Climate Dyn., 45, 2937-2948, https://doi.org/10.1007/s00382-015-2515-3
Yu R.,T. Zhou, T. Wu, W. Xue, and G. Zhou, 2016: Development and Evaluation of High Resolution Climate System Models. Springer. https://doi.org/10.1007/978-981-10-0033-1
Yuan W. H.,2013: Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci., 30, 1679-1694, https://doi.org/10.1007/s00376-013-2250-9
Yuan Y.,X. L. Li, J. Chen, and Y. Xia, 2016: Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteorological Monthly, 42(10), 1161-1175, https://doi.org/10.7519/j.issn.1000-0526.2016.10.001
Zeng Q. C.,1979: The advance in atmospheric dynamics and numerical weather prediction in China. Scientia Atmospherica Sinica, 3, 256-269, https://doi.org/10.3878/j.issn.1006-9895.1979.03.08
Zeng Q. C.,C. G. Yuan, X. H. Zhang, and N. Bao, 1985: A test for the difference scheme of a general circulation model. Acta Meteorologica Sinica, 43, 441-449, https://doi.org/10.11676/qxxb1985.056
Zhang F.,J. N. Li, 2013: Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J. Atmos. Sci., 70, 3084-3101, https://doi.org/10.1175/JAS-D-12-0334.1
Zhang F.,Z. P. Shen, J. N. Li, X. J. Zhou, and L. M. Ma, 2013a: Analytical delta-four-stream doubling-adding method for radiative transfer parameterizations. J. Atmos. Sci., 70, 794-808, https://doi.org/10.1175/JAS-D-12-0122.1
Zhang H.,X. W. Jing, 2016: Advances in studies of cloud overlap and its radiative transfer issues in the climate models. Acta Meteorologica Sinica, 74, 103-113, https://doi.org/10.11676/qxxb2016.009
Zhang H.,M. H. Zhang, and Q.-C. Zeng, 2013b: Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models. Mon. Wea. Rev., 141, 1558-1576, https://doi.org/10.1175/MWR-D-11-00367.1
Zhang H.,X. Jing, and J. Li, 2014a: Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geoscientific Model Development, 7, 737-754, https://doi.org/10.5194/gmd-7-737-2014
Zhang H. B.,J. Chen, X. F. Zhi, Y. L. Li, and Y. Sun, 2014b: Study on the application of GRAPES regional ensemble prediction system. Meteorological Monthly, 40, 1076-1087, https://doi.org/10.7519/j.issn.1000-0526.2014.09.005
Zhang H. B.,J. Chen, X. F. Zhi, Y. Wang, and Y. N. Wang, 2015a: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143-1155, https://doi.org/10.1007/s00376-015-4232-6
Zhang L.,Y. Z. Liu, 2017: The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. Journal of Applied Meteorological Science, 28, 168-176, https://doi.org/10.11898/1001-7313.20170204
Zhang L. H.,J. D. Gong, and R. C. Wang, 2018a: Diagnostic analysis of various observation impacts in the 3DVAR assimilation system of global GRAPES. Mon. Wea. Rev., 146, 3125-3142, https://doi.org/10.1175/MWR-D-17-0182.1
Zhang S. B.,L. Guan, 2017: Preliminary study on direct assimilation of cloud-affected satellite microwave brightness temperatures. Adv. Atmos. Sci., 34, 199-208, https://doi.org/10.1007/s00376-016-6043-9
Zhang T.,L. Li, Y. Lin, W. Xue, F. Xie, H. Xu, and X. Huang, 2015b: An automatic and effective parameter optimization method for model tuning. Geoscientific Model Development, 8, 3579-3591, https://doi.org/10.5194/gmd-8-3579-2015
Zhang X. H.,1990: Dynamical framework of IAP nine-level atmospheric general circulation model. Adv. Atmos. Sci., 7, 67-77, https://doi.org/10.1007/BF02919169
Zhang X.,W. Huang, and B. D. Chen, 2015c: Implementation of the Klemp height-based terrain-following coordinate in the GRAPES regional model: Idealized tests and inter-comparison. Acta Meteorologica Sinica, 73, 331-340, https://doi.org/10.11676/qxxb2015.014
Zhang X.,J.-W. Bao, B. D. Chen, and E. D. Grell, 2018b: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 2023-2045, https://doi.org/10.1175/MWR-D-17-0356.1
Zhang Y.,2018: Extending high-order flux operators on spherical icosahedral grids and their applications in the framework of a shallow water model. Journal of Advances in Modeling Earth Systems, 10, 145-164, https://doi.org/10.1002/2017MS001088
Zhang Y.,H. M. Chen, 2016: Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: Mean state, frequency-intensity relationship, diurnal cycle, and influencing factors. J. Climate, 29, 1067-1089, https://doi.org/10.1175/JCLI-D-15-0342.1
Zhang Y.,J. Li, 2016: Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Climate Dyn., 47, 2923-2934, https://doi.org/10.1007/s00382-016-3005-y
Zhang Y.,R. C. Yu, J. Li, and H. M. Chen, 2013c: An implementation of a leaping-point Two-step Shape-Preserving Advection Scheme in the high-resolution spherical latitude-longitude grid. Acta Meteorologica Sinica, 71(6), 1089-1102, https://doi.org/10.11676/qxxb2013.085
Zhang Y.,H. M. Chen, and R. C. Yu, 2014c: Simulations of stratus clouds over Eastern China in CAM5: Sensitivity to horizontal resolution. J. Climate, 27, 7033-7052, https://doi.org/10.1175/JCLI-D-13-00732.1
Zhang Y.,H. M. Chen, and R. C. Yu, 2015d: Simulations of stratus clouds over Eastern China in CAM5: Sources of errors. J. Climate, 28, 36-55, https://doi.org/10.1175/JCLI-D-14-00350.1
Zhang Y.,R. C. Yu, and J. Li, 2017: Implementation of a conservative two-step shape-preserving advection scheme on a spherical icosahedral hexagonal geodesic grid. Adv. Atmos. Sci., 34, 411-427, https://doi.org/10.1007/s00376-016-6097-8
Zhang Y.,J. Li, R. C. Yu, S. X. Zhang, Z. Liu, J. H. Huang, and Y. H. Zhou, 2019a: A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation and sensitivity exploration. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2018MS001539
Zhang Y.,H. M. Chen, and D. Wang, 2019b: Robust nocturnal and early morning summer rainfall peaks over continental East Asia in a global multiscale modeling framework. Atmosphere, 10, 53, https://doi.org/10.3390/atmos10020053
Zhao B.,B. Zhang, 2018: Application of neighborhood spatial verification method on precipitation evaluation. Torrential Rain and Disasters, 37, 1-7, https://doi.org/10.3969/j.issn.1004-9045.2018.01.001
Zhao X.,Y. L. Lin, Y. R. Peng, B. Wang, H. Morrison, and A. Gettelman, 2017: A single ice approach using varying ice particle properties in global climate model microphysics. Journal of Advances in Modeling Earth Systems, 9, 2138-2157, https://doi.org/10.1002/2017MS000952
Zhou B. W.,J. S. Simon, and F. K. Chow, 2014a: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 2545-2563, https://doi.org/10.1175/JAS-D-13-0356.1
Zhou B. W.,K. F. Zhu, and M. Xue, 2017: A physically based horizontal subgrid-scale turbulent mixing parameterization for the convective boundary layer. J. Atmos. Sci., 74, 2657-2674, https://doi.org/10.1175/JAS-D-16-0324.1
Zhou T. J.,L. W. Zou, B. Wu, C. X. Jin, F. F. Song, X. L. Chen, and L. X. Zhang, 2014b: Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J. Meteor. Res., 28, 762-779, https://doi.org/10.1007/s13351-014-4501-9
Zhou, T., Coauthors, 2016: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geoscientific Model Development, 9, 3589-3604, https://doi.org/10.5194/gmd-9-3589-2016
Zhou X. P.,D. H. Wang, 1996: Study on the very short-range storm numerical forecasting model. Part I: Theoretical frame. Scientia Atmospherica Sinica, 20, 1-11, https://doi.org/10.3878/j.issn.1006-9895.1996.01.01
Zhu F.,G. Q. Xu, X. H. Zheng, and Y. H. Wang, 2015: Super-parameterization in GRAPES: The construction of SP-GRAPES and associated preliminary results. J. Meteor. Res., 29, 272-292, https://doi.org/10.1007/s13351-015-4074-2
Zhu L.,Q. L. Wan, L. K. Liu, X. Y. Shen, and Y. D. Gao, 2017a: Impacts of the ensemble assimilation of Radar radial velocity on the intensity evolution of landfalling typhoon Vicente(2012). Journal of Tropical Meteorology, 33(3), 345-356, https://doi.org/10.16032/j.issn.1004-4965.2017.03.006
Zhu L. J.,J. D. Gong, L. P. Huang, D. H. Chen, Y. Jiang, and L. T. Deng, 2017b: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. Journal of Applied Meteorological Science, 28(1), 38-51, https://doi.org/10.11898/1001-7313.20170104
Zhuang S. Y.,J. S. Xue, G. F. Zhu, J. Zhao, and Z. S. Zhu, 2005: GRAPES global 3D-var system-basic scheme design and single observation test. Chinese Journal of Atmospheric Sciences, 29, 872-884, https://doi.org/10.3878/j.issn.1006-9895.2005.06.04
Zou L. W.,Y. Qian, T. J. Zhou, and B. Yang, 2014: Parameter tuning and calibration of RegCM3 with MIT-emanuel cumulus parameterization scheme over CORDEX East Asia Domain. J. Climate, 27, 7687-7701, https://doi.org/10.1175/JCLI-D-14-00229.1
Zou X. L.,F. Z. Weng, V. Tallapragada, L. Lin, B. L. Zhang, C. F. Wu, and Z. K. Qin, 2015: Satellite data assimilation of upper-level sounding channels in HWRF with two different model tops. J. Meteor. Res., 29, 1-27, https://doi.org/10.1007/s13351-015-4108-9