Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270.
Chen, Y., and Coauthors, 2019: Anthropogenic warming has substantially increased the likelihood of July 2017-like heat waves over central eastern China. Bull. Amer. Meteor. Soc., 100, S91−S95, https://doi.org/10.1175/BAMS-D-18-0087.1.
Christiansen, B., and Coauthors, 2018: Was the cold European winter of 2009/10 modified by anthropogenic climate change? An attribution study J. Climate, 31, 3387−3410, https://doi.org/10.1175/JCLI-D-17-0589.1.
Christidis, N., and P. A. Stott, 2015: Extreme rainfall in the United Kingdom during winter 2013/14: The role of atmospheric circulation and climate change. Bull. Amer. Meteor. Soc., 96, S46−S50, https://doi.org/10.1175/BAMS-D-15-00094.1.
Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 5, 46−50, https://doi.org/10.1038/nclimate2468.
Christidis, N., A. Ciavarella, and P. A. Stott, 2018: Different ways of framing event attribution questions: The example of warm and wet winters in the United Kingdom similar to 2015/16. J. Climate, 31, 4827−4845, https://doi.org/10.1175/JCLI-D-17-0464.1.
Christidis, N., P. A. Stott, A. A. Scaife, A. Arribas, G. S. Jones, D. Copsey, J. R. Knight, and W. J. Tennant, 2013: A new HadGEM3-A based system for attribution of weather and climate-related extreme events. J. Climate, 26, 2756−2783, https://doi.org/10.1175/JCLI-D-12-00169.1.
Ciavarella, A., and Coauthors, 2018: Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Weather and Climate Extremes, 20, 9−32, https://doi.org/10.1016/j.wace.2018.03.003.
CMA, and NCC, 2018: China Climate Bulletin 2017. China Meteorological Administration, National Climate Committee, 55 pp. (in Chinese with English abstract)
CMA, and NCC, 2019: China Climate Bulletin 2018. China Meteorological Administration, National Climate Committee, 55 pp. (in Chinese with English abstract)
Dong, B. W., R. Sutton, L. Shaffrey, and L. Wilcox, 2016: The 2015 European heat wave. Bull. Amer. Meteor. Soc., 93, S57−S62, https://doi.org/10.1175/BAMS-D-16-0140.1.
Folland, C. K., O. Boucher, A. Colman, and D. E. Parker, 2018: Causes of irregularities in trends of global mean surface temperature since the late 19th century. Science Advances, 4, eaao5297, https://doi.org/10.1126/sciadv.aao5297.
Fyfe, J. C., and Coauthors, 2017: Large near-term projected snowpack loss over the western United States. Nature Communications, 8, 14996, https://doi.org/10.1038/ncomms14996.
Hoerling, M., and Coauthors, 2014: Northeast Colorado extreme rains interpreted in a climate change context. Bull. Amer. Meteor. Soc., 95, S15−S18, https://doi.org/10.1175/BAMS-D-12-00194.1.
Hou, W., and Coauthors, 2014: Climatic characteristics over China in 2013. Meteorological Monthly, 40, 482−493, https://doi.org/10.7519/j.issn.1000-0526.2014.04.011. (in Chinese with English abstract)
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, 867−952.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40- year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Lu, C. H., Y. Sun, and X. B. Zhang, 2018: Multimodel detection and attribution of changes in warm and cold spell durations. Environmental Research Letters, 13, 074013, https://doi.org/10.1088/1748-9326/aacb3e.
Lu, C. H., Y. Sun, H. Wan, X. B. Zhang, and Y. Hong, 2016: Anthropogenic influence on the frequency of extreme temperatures in China. Geophys. Res. Lett., 43, 6511−6518, https://doi.org/10.1002/2016GL069296.
Miao, C. Y., Q. H. Sun, D. X. Kong, and Q. Y. Duan, 2016: Record-breaking heat in northwest China in July 2015: Analysis of the severity and underlying causes. Bull. Amer. Meteor. Soc., 97, S97−S101, https://doi.org/10.1175/BAMS-D-16-0142.1.
Min, S.-K., X. B. Zhang, F. Zwiers, H. D. Shiogama, Y.-S. Tung, and M. Wehner, 2013: Multimodel detection and attribution of extreme temperature changes. J. Climate, 26, 7430−7451, https://doi.org/10.1175/JCLI-D-12-00551.1.
Min, S.-K., Y.-H. Kim, M.-K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave. Bull. Amer. Meteor. Soc., 95, S48−S51.
Mitchell, D., 2016: Human influences on heat-related health indicators during the 2015 Egyptian heat wave. Bull. Amer. Meteor. Soc., 97, S70−S74, https://doi.org/10.1175/BAMS-D-16-0132.1.
Morak, S., G. C. Hegerl, and N. Christidis, 2013: Detectable changes in the frequency of temperature extremes. J. Climate, 26, 1561−1574, https://doi.org/10.1175/JCLI-D-11-00678.1.
Qian, C., and Coauthors, 2018: Human influence on the record-breaking cold event in January of 2016 in eastern China. Bull. Amer. Meteor. Soc., 99, S118−S122, https://doi.org/10.1175/BAMS-D-17-0095.1.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Ren, L. W., T. J. Zhou, and W. X. Zhang, 2020: Attribution of the record-breaking heat event over Northeast Asia in summer 2018: The role of circulation. Environmental Research Letters, 15, 054018, https://doi.org/10.1088/1748-9326/ab8032.
Song, L. C., S. Y. Dong, Y. Sun, G. Y. Ren, B. T. Zhou, and P. A. Stott, 2015: Role of anthropogenic forcing in 2014 hot spring in northern China. Bull. Amer. Meteor. Soc., 96, S111−S114, https://doi.org/10.1175/BAMS-D-15-00111.1.
Stone, D. A., 2013: Boundary Conditions for the C20C Detection and Attribution Project: The ALL-Hist/est1 and NAT-Hist/CMIP5-est1 Scenarios. Lawrence Berkeley National Laboratory, 18 pp. [Available online from http://portal.nersc.gov/c20c/input_data/C20C-DandA_dSSTs_All-Hist-est1_Nat-Hist-CMIP5-est1.pdf]
Stott, P. A., and Coauthors, 2016: Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Reviews: Climate Change, 7, 23−41, https://doi.org/10.1002/wcc.380.
Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610−614, https://doi.org/10.1038/nature03089.
Sun, Q. H., and C. Y. Miao, 2018: Extreme rainfall (R20 mm, RX5day) in Yangtze-Huai, China, in June-July 2016: The role of ENSO and anthropogenic climate change. Bull. Amer. Meteor. Soc., 99, S102−S106, https://doi.org/10.1175/BAMS-D-17-0091.1.
Sun, Y., L. C. Song, H. Yin, B. T. Zhou, T. Hu, X. B. Zhang, and P. Stott, 2015: Human influence on the 2015 extreme high temperature events in western China. Bull. Amer. Meteor. Soc., 97, S102−S106, https://doi.org/10.1175/BAMS-D-16-0158.1.
Sun, Y., S. Y. Dong, T. Hu, X. B. Zhang, and P. Stott, 2020: Attribution of the warmest spring of 2018 in northeastern Asia using simulations of a coupled and an atmospheric model. Bull. Amer. Meteor. Soc., 101, S129−S134, https://doi.org/10.1175/BAMS-D-19-0264.1.
Sun, Y., T. Hu, and X. B. Zhang, 2018a: Substantial increase in heat wave risks in China in a future warmer world. Earth’s Future, 6, 1528−1538, https://doi.org/10.1029/2018EF000963.
Sun, Y., T. Hu, X. B. Zhang, H. Wan, P. Stott, and C. H. Lu, 2018b: Anthropogenic influence on the eastern China 2016 super cold surge. Bull. Amer. Meteor. Soc., 99, S123−S127, https://doi.org/10.1175/BAMS-D-17-0092.1.
Sun, Y., X. B. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin, and G. Y. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4, 1082−1085, https://doi.org/10.1038/nclimate2410.
Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change, 5, 725−730, https://doi.org/10.1038/nclimate2657.
van Oldenborgh, G. J., R. Haarsma, H. De Vries, and M. R. Allen, 2015: Cold extremes in North America vs. mild weather in Europe: The winter of 2013−14 in the context of a warming world. Bull. Amer. Meteor. Soc., 96, 707−714, https://doi.org/10.1175/BAMS-D-14-00036.1.
Wang, X. L., and Y. Feng, 2014: RHtests V4 User Manual. P26. Climate Research Division, Science and Technology Branch, Environment Canada, 29 pp. [Available from http://etccdi.pacificclimate.org/RHtest/RHtestsV4_UserManual_10Dec2014.pdf]
Xu, W. H., Q. X. Li, X. L. Wang, S. Yang, L. J. Cao, and Y. Feng, 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos., 118, 9708−9720, https://doi.org/10.1002/jgrd.50791.
Zwiers, F. W., X. B. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881−892, https://doi.org/10.1175/2010JCLI3908.1.