Chen, W., Y. H. Zhang, Z. S. Yin, Y. Q. Zheng, C. X. Yan, Z. D. Yang, and Y. Liu, 2012: The TanSat mission: Global CO2 observation and monitoring. Proceedings of the 63rd International Astronautical Congress, Naples, Italy, International Astronautical Federation.
Drusch, M., and Coauthors, 2017: The fluorescence EXplorer mission concept-ESA’s earth Explorer 8. IEEE Trans. Geosci. Remote Sens., 55, 1273−1284, https://doi.org/10.1109/TGRS.2016.2621820.
Du, S. S., L. Y. Liu, X. J. Liu, X. Zhang, X. Y. Zhang, Y. M. Bi, and L. C. Zhang, 2018: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Science Bulletin, 63(22), 1502−1512, https://doi.org/10.1016/j.scib.2018.10.003.
Frankenberg, C., 2014: D-81519 OCO-2 Algorithm Theoretical Basis Document IMAP-DOAS preprocessor. California Institute of Technology, California.
Frankenberg, C., and J. Berry, 2018: 3. 10 - Solar induced chlorophyll fluorescence: Origins, relation to photosynthesis and retrieval. Comprehensive Remote Sensing, 3, 143−162, https://doi.org/10.1016/B978-0-12-409548-9.10632-3.
Frankenberg, C., and Coauthors, 2011a: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett., 38, L17706, https://doi.org/10.1029/2011GL048738.
Frankenberg, C., A. Butz, and G. C. Toon, 2011b: Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light. Geophys. Res. Lett., 38(3), L03801, https://doi.org/10.1029/2010GL045896.
Frankenberg, C., C. O'Dell, J. Berry, L. Guanter, J. Joiner, P. Köhler, R. Pollock, and T. E. Taylor, 2014: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sensing of Environment, 147, 1−12, https://doi.org/10.1016/j.rse.2014.02.007.
Guanter, L., L. Alonso, L. Gómez-Chova, J. Amorós-López, J. Vila, and J. Moreno, 2007: Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett., 34(8), L08401, https://doi.org/10.1029/2007GL029289.
Guanter, L., C. Frankenberg, A. Dudhia, P. E. Lewis, J. Gómez-Dans, A. Kuze, H. Suto, and R. G. Grainger, 2012: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236−251, https://doi.org/10.1016/j.rse.2012.02.006.
Guanter, L., and Coauthors, 2014: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14), E1327−E1333, https://doi.org/10.1073/pnas.1320008111.
Joiner, J., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and E. M. Middleton, 2011: First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences, 8, 637−651, https://doi.org/10.5194/bg-8-637-2011.
Joiner, J., and Coauthors, 2013: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques, 6, 2803−2823, https://doi.org/10.5194/amt-6-2803-2013.
Köhler, P., L. Guanter, and J. Joiner, 2015: A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmospheric Measurement Techniques, 8, 2589−2608, https://doi.org/10.5194/amt-8-2589-2015.
Köhler, P., C. Frankenberg, T. S. Magney, L. Guanter, J. Joiner, and J. Landgraf, 2018: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and inter-sensor comparison to OCO-2. Geophys. Res. Lett., 45, 10 456−10 463, https://doi.org/10.1029/2018GL079031.
Li, Z. G., and Coauthors, 2017: Prelaunch spectral calibration of a carbon dioxide spectrometer. Measurement Science and Technology, 28, 065801, https://doi.org/10.1088/1361-6501/aa6507.
Liu, Y., D. X. Yang, and Z. N. Cai, 2013: A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data. Chinese Science Bulletin, 58(13), 1520−1523, https://doi.org/10.1007/s11434-013-5680-y.
Liu, Y., and Coauthors, 2018: The TanSat mission: Preliminary global observations. Science Bulletin, 63(18), 1200−1207, https://doi.org/10.1016/j.scib.2018.08.004.
MacBean, N., and Coauthors, 2018: Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Scientific Reports, 8, 1973, https://doi.org/10.1038/s41598-018-20024-w.
Ran, Y. H., and X. Li, 2019: TanSat: A new star in global carbon monitoring from China. Science Bulletin, 64(5), 284−285, https://doi.org/10.1016/j.scib.2019.01.019.
Somkuti, P., H. Bösch, L. Feng, P. I. Palmer, R. J. Parker, and T. Quaife, 2020: A new space-borne perspective of crop productivity variations over the US Corn Belt. Agricultural and Forest Meteorology, 281, 107826, https://doi.org/10.1016/j.agrformet.2019.107826.
Sun, Y., and Coauthors, 2017: OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358, eaam5747, https://doi.org/10.1126/science.aam5747.
Sun, Y., C. Frankenberg, M. Jung, J. Joiner, L. Guanter, P. Köhler, and T. Magney, 2018: Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 209, 808−823, https://doi.org/10.1016/j.rse.2018.02.016.
Wang, Q., Z. D. Yang, and Y. M. Bi, 2014: Spectral parameters and signal-to-noise ratio requirement for TanSat hyper spectral remote sensor of atmospheric CO2. Proc. SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation V, 92591T (8 November 2014); https://doi.org/10.1117/12.2067572
Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, and X. Chen, 2015a: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60, 2063−2066, https://doi.org/10.1007/s11434-015-0953-2.
Yang, D. X., Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lyu, 2018: First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci., 35(6), 621−623, https://doi.org/10.1007/s00376-018-7312-6.
Yang, X., and Coauthors, 2015b: Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett., 42, 2977−2987, https://doi.org/10.1002/2015GL063201.
Zhang, H., Y. Q. Zheng, C. Lin, W. Q. Wang, Q. Wang, and S. Li, 2017: Laboratory spectral calibration of TanSat and the influence of multiplex merging of pixels. Int. J. Remote Sens., 38, 3800−3816, https://doi.org/10.1080/01431161.2017.1306142.
Zhang, Y. G., and Coauthors, 2014: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 20(12), 3727−3742, https://doi.org/10.1111/gcb.12664.