Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, 173−265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.
Chen, D. H., and X. S. Shen, 2006: Recent progress on GRAPES research and application. Journal of Applied Meteorological Science, 17, 773−777, https://doi.org/10.3969/j.issn.1001-7313.2006.06.014. (in Chinese with English abstract
Chen, X., S. J. Lin, and L. M. Harris, 2018: Towards an unstaggered finite-volume dynamical core with a fast Riemann solver: 1-D linearized analysis of dissipation, dispersion, and noise control. Journal of Advances in Modeling Earth Systems, 10, 2333−2356, https://doi.org/10.1029/2018MS001361.
Chu, P. C., and C. W. Fan, 1997: Sixth-order difference scheme for sigma coordinate ocean models. J. Phys. Oceanogr., 27, 2064−2071, https://doi.org/10.1175/1520-0485(1997)027<2064:SODSFS>2.0.CO;2.
Chu, P. C., and C. W. Fan, 2000: An accuracy progressive sixth-order finite-difference scheme. J. Atmos. Oceanic Technol., 18, 1245−1257, https://doi.org/10.1175/1520-0426(2001)018<1245:AAPSOF>2.0.CO;2.
Cullen, M. J. P., and T. Davies, 1991: A conservative split-explicit integration scheme with fourth-order horizontal advection. Quart. J. Roy. Meteor. Soc., 117, 993−1002, https://doi.org/10.1002/qj.49711750106.
Feng, T., and J. P. Li, 2007: A comparison and analysis of high order upwind-biased schemes. Chinese Journal of Atmospheric Sciences, 31, 245−253, https://doi.org/10.3878/j.issn.1006-9895.2007.02.06. (in Chinese with English abstract
Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209−228, https://doi.org/10.1016/0021-9991(75)90037-6.
Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 2174−2187, https://doi.org/10.1175/2010MWR3080.1.
Li, C., D. H. Chen, and X. L. Li, 2012: A design of height-based terrain-following coordinates in the atmospheric numerical model: Theoretical analysis and idealized test. Acta Meteorologica Sinica, 70, 1247−1259, https://doi.org/10.11676/qxxb2012.105. (in Chinese with English abstract
Li, J. P., 2005: General explicit difference formulas for numerical differentiation. Journal of Computational and Applied Mathematics, 183, 29−52, https://doi.org/10.1016/j.cam.2004.12.026.
Li, W. M., 2012: Verification to stability of difference scheme for convection equation. Journal of Henan Polytechnic University (Natural Science), 31, 369−372, https://doi.org/10.3969/j.issn.1673-9787.2012.03.025. (in Chinese with English abstract
Li, X. L., C. G. Chen, F. Xiao, and X. S. Shen, 2015: A high-order multi-moment constrained finite-volume global shallow-water model on the Yin-Yang grid. Quart. J. Roy. Meteor. Soc., 141, 2090−2102, https://doi.org/10.1002/qj.2504.
Lin, D., and J. M. Zhan, 2008: Combined super compact finite difference scheme and application to simulation of shallow water equations. Chinese Journal of Computational Mechanics, 25, 791−796. (in Chinese with English abstract
Lin, S. J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293−2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.
Lin, S. J. and R. B. Rood, 1996: Multidimensional Flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046−2070, https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.
McCalpin, J. D., 1994: A comparison of second-order and fourth-order pressure gradient algorithms in a σ‐co‐ordinate ocean model. International Journal for Numerical Methods in Fluids, 18, 361−383, https://doi.org/10.1002/fld.1650180404.
Morinishi, Y., T. S. Lund, O. V. Vasilyev, and P. Moin, 1998: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys., 143, 90−124, https://doi.org/10.1006/jcph.1998.5962.
Purser, R. J., and L. M. Leslie, 1988: A semi-implicit, semi-Lagrangian finite-difference scheme using hligh-order spatial differencing on a nonstaggered grid. Mon. Wea. Rev., 116, 2069−2080, https://doi.org/10.1175/1520-0493(1988)116<2069:ASISLF>2.0.CO;2.
Reinecke, P. A., and D. Durran, 2009: The overamplification of gravity waves in numerical solutions to flow over topography. Mon. Wea. Rev., 137, 1533−1549, https://doi.org/10.1175/2008MWR2630.1.
Sanderson, B., and G. Brassington, 2002: Fourth- and fifth-order finite-difference methods applied to a control-volume ocean model. J. Atmos. Oceanic Technol., 19, 1424−1441, https://doi.org/10.1175/1520-0426(2002)019<1424:FAFOFD>2.0.CO;2.
Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459−2480, https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.
Shu, Q., and Coauthors, 2020: A HIGH order positive-definite conservative multi-moment center constrained finite volume transport model. Acta Meteorologica Sinica, 78, 655−678, https://doi.org/10.11676/qxxb2020.039. (in Chinese with English abstract
Sun, J. A., W. Jia, and G. Z. Wu, 2014: A higher accurate compact difference scheme on non-uniform grid. Journal of Northwest Normal University (Natural Science), 50, 31−35, https://doi.org/10.3969/j.issn.1001-988X.2014.04.006. (in Chinese with English abstract
Vichnevetsky, R., 1987: Wave propagation and reflection in irregular grids for hyperbolic equations. Applied Numerical Mathematics, 3, 133−166, https://doi.org/10.1016/0168-9274(87)90009-2.
Xu, D. S., and D. H. Chen, 2020: A vertical second-order difference scheme for non-uniformly distributed layers and its application in GRAPES model. Chinese Journal of Atmospheric Sciences, 44, 975−983, https://doi.org/10.3878/j.issn.1006-9895.1906.19145. (in Chinese with English abstract
Xu, D. S., Z. T. Chen, S. X. Zhong, Y. J. Wen, and D. D. Xie, 2015: The limitation of cloud base mass flux in cumulus parameterization and its application in a high-resolution model. Journal of Tropical Meteorology, 21, 401−412, https://doi.org/10.3969/j.issn.1004-4965.2014.03.001. (in Chinese with English abstract
Xue, J. S., and D. H. Chen, 2008: The Scientific Design and Application of the Next Generation of Numerical Weather Prediction System (GRAPES). Science Press, 132−136. (in Chinese)
Yang, J. H., J. Q. Song, J. P. Wu, K. J. Ren, and H. Z. Leng, 2015: A high-order vertical discretization method for a semi-implicit mass-based non-hydrostatic kernel. Quart. J. Roy. Meteor. Soc., 141, 2880−2885, https://doi.org/10.1002/qj.2573.