Brauer, N. S., J. B. Basara, C. R. Homeyer, G. M. McFarquhar, and P. E. Kirstetter, 2020: Quantifying precipitation efficiency and drivers of excessive precipitation in post-landfall hurricane harvey. Journal of Hydrometeorology, 21, 433−452, https://doi.org/10.1175/JHM-D-19-0192.1.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354−365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. Journal of Hydrometeorology, 12, 935−954, https://doi.org/10.1175/JHM-D-10-05013.1.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687−2710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.
Chen, F. J., Y. F. Fu, and Y. J. Yang, 2019a: Regional variability of precipitation in tropical cyclones over the western north pacific revealed by the GPM dual-frequency precipitation radar and microwave imager. J. Geophys. Res., 124, 11 281−11 296,
Chen, G., and Coauthors, 2019b: Microphysical characteristics of three convective events with intense rainfall observed by polarimetric radar and disdrometer in Eastern China. Remote Sensing, 11, 2004, https://doi.org/10.3390/rs11172004.
Chen, H. N., V. Chandrasekar, and R. Bechini, 2017: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. Journal of Hydrometeorology, 18, 917−937, https://doi.org/10.1175/JHM-D-16-0124.1.
Chen, Q., J. W. Fan, S. Hagos, W. I. Gustafson Jr., and L. K. Berg, 2015: Roles of wind shear at different vertical levels: Cloud system organization and properties. J. Geophys. Res., 120, 6551−6574, https://doi.org/10.1002/2015JD023253.
Chu, C.-M., and Y.-L. Lin, 2000: Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow. J. Atmos. Sci., 57, 3817−3837, https://doi.org/10.1175/1520-0469(2001)057<3817:EOOOTG>2.0.CO;2.
Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, https://doi.org/10.1029/2000JD000264.
Coceal, O., and S. E. Belcher, 2004: A canopy model of mean winds through urban areas. Quart. J. Roy. Meteor. Soc., 130, 1349−1372, https://doi.org/10.1256/qj.03.40.
Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.
Ding, Y. H., C. Y. Li, and Y. J. Liu, 2004: Overview of the South China sea monsoon experiment. Adv. Atmos. Sci., 21, 343−360, https://doi.org/10.1007/BF02915563.
Dixon, M., 2015. Radx C++ software package for radial radar data, [Available from https://github.com/NCAR/lrose-core/tree/master/codebase/apps/Radx/src/Radx2Grid]
Dixon, P. G., and T. L. Mote, 2003: Patterns and causes of Atlanta's urban heat island–initiated precipitation. J. Appl. Meteorol. Climatol., 42, 1273−1284, https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2.
Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteorol. Climatol., 52, 2162−2186, https://doi.org/10.1175/JAMC-D-12-0275.1.
Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 1453−1476, https://doi.org/10.1175/JAS-D-17-0242.1.
Doswell III, C. A., 1985: The operational meteorology of convective weather. Volume II. Storm scale analysis. NOAA technical memorandum ERL ESG 15, 240 pp.
Gauthier, M. L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston. Geophys. Res. Lett., 33, L20803, https://doi.org/10.1029/2006GL027244.
Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 1185−1188, https://doi.org/10.1029/GL015i011p01185.
Hamada, A., Y. N. Takayabu, C. T. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nature Communications, 6, 6213, https://doi.org/10.1038/ncomms7213.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Huang, H., and Coauthors, 2018: Quantitative precipitation estimation with operational polarimetric radar measurements in Southern China: A differential phase–based variational approach. J. Atmos. Oceanic Technol., 35, 1253−1271, https://doi.org/10.1175/JTECH-D-17-0142.1.
Huang, H., K. Zhao, G. F. Zhang, D. M. Hu, and Z. W. Yang, 2020: Optimized raindrop size distribution retrieval and quantitative rainfall estimation from polarimetric radar. J. Hydrol., 580, 124248, https://doi.org/10.1016/j.jhydrol.2019.124248.
Istok, M. J., and Coauthors, 2009: WSR-88D dual polarization initial operational capabilities. Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc.
Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteorol. Climatol., 49, 1247−1267, https://doi.org/10.1175/2010JAMC2243.1.
Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052−3067, https://doi.org/10.1175/JAS-D-13-0357.1.
Li, F. Y., D. Rosa, W. D. Collins, and M. F. Wehner, 2012: “Super-parameterization”: A better way to simulate regional extreme precipitation. Journal of Advances in Modeling Earth Systems, 4, M04002, https://doi.org/10.1029/2011MS000106.
Liu, C. T., and E. J. Zipser, 2009: “Warm Rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767−779, https://doi.org/10.1175/2008JCLI2641.1.
Liu, C. T., and E. Zipser, 2013a: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res., 118, 453−466, https://doi.org/10.1029/2012JD018409.
Liu, C. T., and E. J. Zipser, 2013b: Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface. J. Geophys. Res., 118, 135−148, https://doi.org/10.1029/2012JD018134.
Liu, C. T., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, https://doi.org/10.1029/2011JD017123.
May, R., and Z. Bruick, 2019: MetPy: An community-driven, open-source python toolkit for meteorology. Preprints, American Geophysical Union Fall Meeting 2019, NS21A-16.
McKnight, P. E., and J. Najab, 2010: Mann-whitney U test. The Corsini Encyclopedia of Psychology, 4th ed., I. B. Weiner and W. E. Craighead, Eds., John Wiley & Sons, Inc.,
Naccarato, K. P., M. M. F. Saba, C. Schumann, O. Pinto, C. Medeiros, and S. Heckman, 2013: Waveform analysis of cloud-to-ground flashes as detected by fast e-field antennas and lightning location systems: On the way to precisely estimate the stroke peak current. Preprints, 2013 International Symposium on Lightning Protection, Belo Horizonte, IEEE, 57−61,
Nielsen, E. R., and R. S. Schumacher, 2020: Dynamical mechanisms supporting extreme rainfall accumulations in the houston “Tax Day” 2016 Flood. Mon. Wea. Rev., 148, 83−109, https://doi.org/10.1175/MWR-D-19-0206.1.
Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14 025−14 040,
Piao, S. L., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 43−51, https://doi.org/10.1038/nature09364.
Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteorol. Climatol., 32, 642−655, https://doi.org/10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.
Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol., 34, 1978−2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.
Sun, J. Z., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793−813, https://doi.org/10.1175/MWR2887.1.
Sun, X. Y., and Coauthors, 2021: On the localized extreme rainfall over the great bay area in South China with complex topography and strong UHI effects. Mon. Wea. Rev., 149, 2777−2801, https://doi.org/10.1175/MWR-D-21-0004.1.
Takahashi, T., T. Kawano, and M. Ishihara, 2015: Different precipitation mechanisms produce heavy rain with and without lightning in Japan. J. Meteor. Soc. Japan, 93, 245−263, https://doi.org/10.2151/jmsj.2015-014.
Vincent, B. R., L. D. Carey, D. Schneider, K. Keeter, and R. Gonski, 2003: Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig, 27, 35−44.
Vitale, J. D., and T. Ryan, 2013: Operational recognition of high precipitation efficiency and low-echo-centroid convection. Journal of Operational Meteorology, 1, 128−143, https://doi.org/10.15191/nwajom.2013.0112.
Wang, M. J., K. Zhao, W.-C. Lee, and F. Q. Zhang, 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of typhoon matmo (2014) after landfall. J. Geophys. Res., 123, 6549−6564, https://doi.org/10.1029/2018JD028578.
Wu, P., B. K. Xi, X. Q. Dong, and Z. B. Zhang, 2018: Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores. Atmospheric Chemistry and Physics, 18, 17 405−17 420,
Xu, W. X., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett., 39, L07802, https://doi.org/10.1029/2012GL051242.
Xu, W. X., E. J. Zipser, and C. T. Liu, 2009: Rainfall characteristics and convective properties of Mei-Yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 4261−4275, https://doi.org/10.1175/2009MWR2982.1.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830−841, https://doi.org/10.1109/36.917906.