Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, N. Y. Wang, P. W. Gaiser, and S. Cox, 2006: A nonlinear optimization algorithm for windsat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44(3), 597−610, https://doi.org/10.1109/TGRS.2005.862504.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Debye, P., 1929: Polar Molecules. Dover Publications Inc., 172 pp.
Dinnat, E. P., J. Boutin, G. Caudal, J. Etcheto, and P. Waldteufel, 2002: Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. Int. J. Remote Sens., 23(23), 5117−5122, https://doi.org/10.1080/01431160210163119.
Dinnat, E. P., J. Boutin, G. Caudal, and J. Etcheto, 2003: Issues concerning the sea emissivity modeling at L band for retrieving surface salinity. Radio Sci., 38(4), 25-1−25-4, https://doi.org/10.1029/2002RS002637.
Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5), 4971−5029, https://doi.org/10.1029/JC092iC05p04971.
Durden, S., and J. Vesecky, 1985: A physical radar cross-section model for a wind-driven sea with swell. IEEE Journal of Oceanic Engineering, 10, 445−451, https://doi.org/10.1109/JOE.1985.1145133.
English, S. J., and T. J. Hewison, 1998: Fast generic millimeter-wave emissivity model. Proceedings of the SPIE 3503, Microwave Remote Sensing of the Atmosphere and Environment, Beijing, China, SPIE, 288−300, https://doi.org/10.1117/12.319490.
Fan, X. H., H. B. Chen, Z. G. Han, and L. F. Lin, 2010: An improved atmospheric vector radiative transfer model incorporating rough ocean boundaries. Atmos. Ocean. Sci. Lett., 3, 139−144, https://doi.org/10.1080/16742834.2010.11446860.
Germain, K. M. S., G. Poe, and P. Gaiser, 1998: Modeling of the polarimetric microwave signal due to ocean surface wind vector. Proceedings of 1988 IEEE International Geoscience and Remote Sensing Symposium Sensing and Managing the Environment, Seattle, WA, USA, IEEE, https://doi.org/10.1109/IGARSS.1998.702196.
Guillou, C., W. Ellison, L. Eymard, K. Lamkaouchi, C. Prigent, G. Delbos, G. Balana, and S. A. Boukabara, 1998: Impact of new permittivity measurements on sea surface emissivity modeling in microwaves. Radio Sci., 33(3), 649−667, https://doi.org/10.1029/97RS02744.
He, X. Q., Y. Bai, Q. K. Zhu, and F. Gong, 2010: A vector radiative transfer model of coupled ocean–atmosphere system using matrix-operator method for rough sea-surface. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(10), 1426−1448, https://doi.org/10.1016/j.jqsrt.2010.02.014.
Jin, X. C., X. Q. He, P. Shanmugam, Y. Bai, F. Gong, S. J. Yu, 2021: Comprehensive vector radiative transfer model for estimating sea surface salinity from L-Band microwave radiometry. IEEE Trans. Geosci. Remote Sens., 59(6), 4888−4903, https://doi.org/10.1109/TGRS.2020.3007878.
Johnson, J. T., 2006: An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface. IEEE Trans. Geosci. Remote Sens., 44(3), 560−568, https://doi.org/10.1109/TGRS.2005.855999.
Johnson, J. T., W. H. Theunissen, and S. W. Ellingson, 2004: A study of sea emission models for WindSat. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, IEEE, https://doi.org/10.1109/IGARSS.2003.1293894.
Kazumori, M., and S. J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation. Quart. J. Roy. Meteor. Soc., 141(689), 1354−1375, https://doi.org/10.1002/qj.2445.
Kilic, L., C. Prigent, J. Boutin, T. Meissner, S. English, and S. Yueh, 2019: Comparisons of ocean radiative transfer models with SMAP and AMSR2 observations. J. Geophys. Res., 124, 7683−7699, https://doi.org/10.1029/2019JC015493.
Klein, L., and C. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25(1), 104−111, https://doi.org/10.1109/TAP.1977.1141539.
Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves, 12, 659−675, https://doi.org/10.1007/BF01008897.
Liu, Q. H., F. Z. Weng, and S. J. English, 2011: An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens., 49(4), 1238−1250, https://doi.org/10.1109/TGRS.2010.2064779.
Lyzenga, D. R., and J. F. Vesecky, 2002: Two-scale polarimetric emissivity model: Efficiency improvements and comparisons with data. Progress in Electromagnetics Research, 37, 205−219, https://doi.org/10.2528/PIER02101000.
Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: The passive and active microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geoscientific Model Development, 13(9), 4229−4251, https://doi.org/10.5194/gmd-13-4229-2020.
Meissner, T., and F. J. Wentz, 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42(9), 1836−1849, https://doi.org/10.1109/TGRS.2004.831888.
Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz Over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50(8), 3004−3026, https://doi.org/10.1109/TGRS.2011.2179662.
Monahan, E. C., and I. G. O’Muircheartaigh, 1986: Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens., 7, 627−642, https://doi.org/10.1080/01431168608954716.
Perrin, F., 1942: Polarization of light scattered by isotropic opalescent media. The Journal of Chemical Physics, 10(7), 415−427, https://doi.org/10.1063/1.1723743.
Prigent, C., F. Aires, D. Wang, S. Fox, and C. Harlow, 2017: Sea-surface emissivity parametrization from microwaves to millimetre waves. Quart. J. Roy. Meteor. Soc., 143, 596−605, https://doi.org/10.1002/qj.2953.
Pierdicca N., F. S. Marzano, L. Guerriero, P. Pampaloni, 2000: On the Effect of Atmospheric Emission Upon the Passive Microwave Polarimetric Response of an Azimuthally Anisotropic Sea Surface. Journal of Electromagnetic Waves and Applications, 14(3), 355−358, https://doi.org/10.1163/156939300X00879.
Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125(556), 1407−1425, https://doi.org/10.1002/qj.1999.49712555615.
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717−2737, https://doi.org/10.5194/gmd-11-2717-2018.
Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27(12), 2502−2509, https://doi.org/10.1364/AO.27.002502.
Stogryn, A., 2003: The emissivity of sea foam at microwave frequencies. Proceedings of the 1971 Antennas and Propagation Society International Symposium, Los Angeles, CA, USA, IEEE, https://doi.org/10.1109/APS.1971.1150923.
Van de Hulst, H. C., 1957: Light Scattering by Small Particles. John Wiley and Sons.
Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64(11), 3799−3807, https://doi.org/10.1175/2007JAS2112.1.
Weng, F. Z., and Q. H. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 2633−2646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.
Weng, F. Z., X. W. Yu, Y. H. Duan, J. Yang, and J. J. Wang, 2020: Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37(2), 131−136, https://doi.org/10.1007/s00376-019-9170-2.
Wentz, F. J., 1975: A two-scale scattering model for foam-free sea microwave brightness temperatures. J. Geophys. Res., 80(24), 3441−3446, https://doi.org/10.1029/JC080i024p03441.
Wu, S. T., and A. K. Fung, 1972: A noncoherent model for microwave emissions and backscattering from the sea surface. J. Geophys. Res., 77(30), 5917−5929, https://doi.org/10.1029/JC077i030p05917.
Yin, X. B., J. Boutin, E. Dinnat, Q. T. Song, and A. Martin, 2016: Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach. Remote Sensing of Environment, 180, 221−233, https://doi.org/10.1016/j.rse.2016.02.005.
Yueh, S. H., 1997: Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens., 35(6), 1400−1418, https://doi.org/10.1109/36.649793.
Yueh, S. H., S. V. Nghiem, and R. Kwok, 1994: Comparison of a polarimetric scattering and emission model with ocean backscatter and brightness measurements. Proceedings of the 1994 International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, IEEE, https://doi.org/10.1109/IGARSS.1994.399097.
Zhang, Y., Y. E. Yang, and J. A. Kong, 2002: A composite model for estimation of polarimetric thermal emission FROM foam-covered wind-driven ocean surface. Progress in Electromagnetics Research, 37, 143−190, https://doi.org/10.2528/PIER02040800.