Aberson, S. D., J. P. Dunion, and F. D. Marks, 2006a: A photograph of a wavenumber-2 asymmetry in the Eye of Hurricane Erin. J. Atmos. Sci., 63, 387−391, https://doi.org/10.1175/JAS3593.1.
Aberson, S. D., M. L. Black, R. A. Black, R. W. Burpee, J. J. Cione, C. W. Landsea, and F. D. Marks, 2006b: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 1039−1056, https://doi.org/10.1175/BAMS-87-8-1039.
Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582−590, https://doi.org/10.1175/WAF-D-13-00092.1.
Dean, L., K. A. Emanuel, and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, https://doi.org/10.1029/2009GL039051.
Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteorol., 43, 282−296, https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.
Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounding unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteorol. Climatol., 45, 1573−1581, https://doi.org/10.1175/JAM2429.1.
Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in Hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825−841, https://doi.org/10.1175/1520-0493(2002)130<0825:FLTIWE>2.0.CO;2.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585−604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Guo, X., and Z.-M. Tan, 2017: Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett., 44, 4324−4331, https://doi.org/10.1002/2017GL073680.
Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418−442, https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.
Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Atmos. Sci., 18, 779−789, https://doi.org/10.1175/1520-0469(1961)018<0779:MCITCO>2.0.CO;2.
Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 1268−1285, https://doi.org/10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.
Jorgensen, D. P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II. Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287−1311, https://doi.org/10.1175/1520-0469(1984)041<1287:MACSCO>2.0.CO;2.
Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 3555−3575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.
Li, Q. Q., and Y. Q. Wang, 2012a: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 997−1020, https://doi.org/10.1175/2011JAS3690.1.
Li, Q. Q., and Y. Q. Wang, 2012b: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782−2805, https://doi.org/10.1175/MWR-D-11-00237.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 3144−3163, https://doi.org/10.1175/JAS-D-13-0312.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203−227, https://doi.org/10.1175/JAS-D-16-0123.1.
Ma, Z. H., 2020: A study of the interaction between Typhoon Francisco (2013) and a cold-core eddy. Part I: Rapid weakening. J. Atmos. Sci., 77, 355−377, https://doi.org/10.1175/JAS-D-18-0378.1.
Ma, Z. H., J. F. Fei, X. G. Huang, X. P. Cheng, and L. Liu, 2020: A study of the interaction between Typhoon Francisco (2013) and a cold-core eddy. Part II: Boundary layer structures. J. Atmos. Sci., 77, 2865−2883, https://doi.org/10.1175/JAS-D-19-0339.1.
Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1−20, https://doi.org/10.1111/j.2153-3490.1960.tb01279.x.
Martinez, J., M. M. Bell, J. L. Vigh, and R. F. Rogers, 2017: Examining tropical cyclone structure and intensification with the FLIGHT+ dataset from 1999 to 2012. Mon. Wea. Rev., 145, 4401−4421, https://doi.org/10.1175/MWR-D-17-0011.1.
Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408−1418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby- waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435−465, https://doi.org/10.1002/qj.49712353810.
Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 1335−1347, https://doi.org/10.1175/BAMS-87-10-1335.
Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 1912−1932, https://doi.org/10.1175/1520-0493(1982)110<1912:TTOTHF>2.0.CO;2.
Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513−526, https://doi.org/10.1175/BAMS-88-4-513.
Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868−883, https://doi.org/10.1175/2008WAF2007087.1.
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325−340, https://doi.org/10.1175/JAS3595.1.
Schneider, R., and G. M. Barnes, 2005: Low‐level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea Rev., 133, 3243−3259, https://doi.org/10.1175/MWR3027.1.
Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in Hurricanes. J. Atmos. Sci., 56, 1197−1223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.
Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595−605, https://doi.org/10.1002/qj.49.
Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 3322−3335, https://doi.org/10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.
Shea, D. J., and W. M. Gray, 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544−1564, https://doi.org/10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.
Simpson, R. H., 1952: Exploring eye of Typhoon “Marge,” 1951. Bull. Amer. Meteor. Soc., 33, 286−298, https://doi.org/10.1175/1520-0477-33.7.286.
Simpson, R. H., 1955: On the structure of tropical cyclones as studied by aircraft reconnaissance. Proc. Unesco Symposium on Typhoons, Tokyo, The Japanese National Committee for UNESCO, 129−150.
Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645−663, https://doi.org/10.1175/2008MWR2531.1.
Song, J. J., Y. H. Duan, and P. J. Klotzbach, 2020: Revisiting the relationship between tropical cyclone size and intensity over the western North Pacific. Geophys. Res. Lett., 47, e2020GL088217, https://doi.org/10.1029/2020GL088217.
Vigh, J. L., and Coauthors, 2018: FLIGHT+: The extended flight level dataset for tropical cyclones (Version 1.3). Tropical Cyclone Data Project, National Center for Atmospheric Research, Research Applications Laboratory, Boulder, Colorado.
Wang, Y. Q., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213−1238, https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.
Wang, Y. Q., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239−1262, https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.
Wang, Y. Q., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158−1181, https://doi.org/10.1175/2007JAS2426.1.
Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053−3067, https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.
Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 1298−1305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.
Wu, L. G., W. Tian, Q. Y. Liu, J. Cao, and J. A. Knaff, 2015: Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific. J. Climate, 28, 9501−9506, https://doi.org/10.1175/JCLI-D-15-0628.1.
Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving gate convective band. J. Atmos. Sci., 38, 1725−1750, https://doi.org/10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.