Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445−3482, https://doi.org/10.1175/jcli3819.1.
Chan, M. A., and J. C. Comiso, 2013: Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat. J. Climate, 26, 3285−3306, https://doi.org/10.1175/jcli-d-12-00204.1.
Chen, T., Y. C. Zhang, and W. B. Rossow, 2000: Sensitivity of atmospheric radiative heating rate profiles to variations of cloud layer overlap. J. Climate, 13, 2941−2959, https://doi.org/10.1175/1520-0442(2000)013<2941:Soarhr>2.0.Co;2.
Cho, Y., S. J. Park, J. H. Kim, H. Yeo, J. Nam, S. Y. Jun, B. M. Kim, and S. W. Kim, 2021: Investigating wintertime cloud microphysical properties and their relationship to air mass advection at Ny-Ålesund, svalbard using the synergy of a cloud radar-ceilometer-microwave radiometer. Remote Sensing, 13, 2529, https://doi.org/10.3390/rs13132529.
Dong, X. Q., B. K. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe, 2010: A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res.: Atmos., 115, D17212, https://doi.org/10.1029/2009jd013489.
Fang, L. X., Y. Y. Li, G. R. Sun, C. C. Gao, and Z. X. Lu, 2016: Horizontal and vertical distributions of clouds of different types based on CloudSat-CALIPSO data. Climatic and Environmental Research, 21, 547−556, https://doi.org/10.3878/j.issn.1006-9585.2016.15240. (in Chinese with English abstract
Hersbach, H., and Coauthors, 2019a: ERA5 monthly averaged data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.6860a573.
Hersbach, H., and Coauthors, 2019b: ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.f17050d7.
Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221−232, https://doi.org/10.1007/s00382-003-0332-6.
Im, E., C. Wu, and S. L. Durden, 2005: Cloud profiling radar for the CloudSat mission. IEEE Aerospace and Electronic Systems Magazine, 20, 15−18, https://doi.org/10.1109/maes.2005.1581095.
Inoue, J., and Coauthors, 2021: Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic Ocean. J. Geophys. Res.: Atmos., 126, e2020JD033904, https://doi.org/10.1029/2020jd033904.
Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res.: Oceans, 107, 8039, https://doi.org/10.1029/2000jc000439.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., IPCC Fourth Assessment Report. Climate Change 2007, Working Group I Report “The Physical Science Basis”, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Jones, N., 2011: Arctic Ocean feels the heat. Nature, https://doi.org/10.1038/news.2011.52.
Kay, J. E., T. L'Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and G. Cesana, 2016: Recent advances in Arctic cloud and climate research. Current Climate Change Reports, 2, 159−169, https://doi.org/10.1007/s40641-016-0051-9.
Lasserre, F., and P. L. Têtu, 2020: The geopolitics of transportation in the melting Arctic. A Research Agenda for Environmental Geopolitics, S. O’Lear, Ed., Edward Elgar Publishing, Inc., 105−120, https://doi.org/10.4337/9781788971249.00016.
L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res.: Atmos., 113, D00A15, https://doi.org/10.1029/2008jd009951.
Liu, Y. H., S. A. Ackerman, B. C. Maddux, J. R. Key, and R. A. Frey, 2010: Errors in cloud detection over the arctic using a satellite imager and implications for observing feedback mechanisms. J. Climate, 23, 1894−1907, https://doi.org/10.1175/2009jcli3386.1.
Liu, Y. H., J. R. Key, S. A. Ackerman, G. G. Mace, and Q. Q. Zhang, 2012: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sensing of Environment, 124, 159−173, https://doi.org/10.1016/j.rse.2012.05.006.
Luo, Y. L., R. H. Zhang, and H. Wang, 2009: Comparing occurrences and vertical structures of hydrometeors between Eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22, 1052−1064, https://doi.org/10.1175/2008jcli2606.1.
Mace, G. G., and Q. Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res.: Atmos., 119, 9441−9462, https://doi.org/10.1002/2013jd021374.
Mace, G. G., Q. Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res.: Atmos., 114, D00A26, https://doi.org/10.1029/2007jd009755.
Morrison, A. L., J. E. Kay, H. Chepfer, R. Guzman, and V. Yettella, 2018: Isolating the liquid cloud response to recent arctic sea ice variability using spaceborne lidar observations. J. Geophys. Res.: Atmos., 123, 473−490, https://doi.org/10.1002/2017jd027248.
Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere Warm Fronts. J. Climate, 25, 5135−5151, https://doi.org/10.1175/jcli-d-11-00569.1.
Nayak, M., 2012: CloudSat anomaly recovery and operational lessons learned. Preprints, SpaceOps 2012 Conference, Stockholm, Sweden, AIAA, 1−14, https://doi.org/10.2514/6.2012-1295798.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.: Atmos., 108, 4407, https://doi.org/10.1029/2002jd002670.
Sassen, K., and Z. E. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007gl032591.
Sassen, K., Z. E. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res.: Atmos., 113, D00A12, https://doi.org/10.1029/2008jd009972.
Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616−628, https://doi.org/10.1175/1520-0442(2004)017<0616:Crfota>2.0.Co;2.
Tang, Y. H., Y. Q. Zhou, M. Cai, and Q. R. Ma, 2020: Global distribution of clouds based on CloudSat and CALIPSO combined observations. Transactions of Atmospheric Sciences, 43, 917−931, https://doi.org/10.13878/j.cnki.dqkxxb.20180104001. (in Chinese with English abstract
Taylor, P. C., S. Kato, K. M. Xu, and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res.: Atmos., 120, 12 656−12 678, https://doi.org/10.1002/2015jd023520.
Tjernström, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations J. Appl. Meteor. Climatol., 47, 2405−2422, https://doi.org/10.1175/2008jamc1845.1.
Tourville, N., 2014: CloudSat battery anomaly: The amazing story of recovery and saving a satellite while still in orbit 705 km above Earth. The CloudSat Downlink: The Newsletters of the CEN. [Available online at: https://cloudsat.atmos.colostate.edu/newsletter/Summer2014.pdf]
Wang, Z., 2019: CloudSat 2B-CLDCLASS-LIDAR product process description and interface control document. CloudSat Project, 59 pp. [Available online from https://www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar]
Wang, Z. E., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteorol., 40, 1665−1682, https://doi.org/10.1175/1520-0450(2001)040<1665:Ctampr>2.0.Co;2.
Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231−250, https://doi.org/10.1007/s00382-007-0232-2.
Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007gl030135.
Yeo, H., M. H. Kim, S. W. Son, J. H. Jeong, J. H. Yoon, B. M. Kim, and S. W. Kim, 2022: Arctic cloud properties and associated radiative effects in the three newer reanalysis datasets (ERA5, MERRA-2, JRA-55): Discrepancies and possible causes. Atmospheric Research, 270, 106080, https://doi.org/10.1016/j.atmosres.2022.106080.
Zhang, J., and Y. C. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11, 1157−1171, https://doi.org/10.1175/2010jhm1201.1.
Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557−564, https://doi.org/10.1002/2014gl062015.
Zhou, R., Y. Y. Li, and C. S. Lu, 2022: Macroscopic characteristics and formation mechanisms of Arctic clouds based on CloudSat-CALIPSO data. Climatic and Environmental Research, 27, 630−642, https://doi.org/10.3878/j.issn.1006-9585.2021.21152. (in Chinese with English abstract