Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888−2899, https://doi.org/10.1175/2009JAS2883.1.
Caniaux, G., J. L. Redelsperger, and J. P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci., 51, 2046−2074, https://doi.org/10.1175/1520-0469(1994)051<2046:ANSOTS>2.0.CO;2.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Erfani, E., and D. L. Mitchell, 2017: Growth of ice particle mass and projected area during riming. Atmospheric Chemistry and Physics, 17, 1241−1257, https://doi.org/10.5194/acp-17-1241-2017.
Fan, J. W., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I−Convective updrafts. J. Geophys. Res., 122(17), 9351−9378, https://doi.org/10.1002/2017JD026622.
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997−2017, https://doi.org/10.1256/qj.04.134.
Guo, X. L., and G. G. Zheng, 2009: Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci., 26, 240−252, https://doi.org/10.1007/s00376-009-0240-8.
Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367−381, https://doi.org/10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.
Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457−3491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.
Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 2902−2928, https://doi.org/10.1175/JAS-D-14-0363.1.
Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568−596, https://doi.org/10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.
Hogan, R. J., M. D. Behera, E. J. O'Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106, https://doi.org/10.1029/2003GL018977.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hou, T. J., H. C. Lei, and Z. X. Hu, 2010: A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmospheric Research, 96, 447−460, https://doi.org/10.1016/j.atmosres.2010.02.004.
Hou, T. J., H. C. Lei, Z. X. Hu, and J. Zhou, 2014: Aircraft observations of ice particle properties in stratiform precipitating clouds. Advances in Meteorology, 2014, 206352, https://doi.org/10.1155/2014/206352.
Hou, T. J., H. C. Lei, J. F. Yang, Z. X. Hu, and Q. J. Feng, 2016: Investigation of riming within mixed-phase stratiform clouds using weather research and forecasting (WRF) model. Atmospheric Research, 178−179, 291−303, https://doi.org/10.1016/j.atmosres.2016.04.007.
Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 3108−3121, https://doi.org/10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.
Korolev, A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 2873−2902, https://doi.org/10.1002/qj.49712656913.
Lin, Y. L., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 1013−1035, https://doi.org/10.1175/2010MWR3293.1.
Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185−2197, https://doi.org/10.1029/JC079i015p02185.
Luo, Y. L., Y. J. Wang, H. Y. Wang, Y. J. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, https://doi.org/10.1029/2010JD013873.
Ma, J. Z., X. L. Guo, C. S. Zhao, Y. J. Zhang, and Z. J. Hu, 2007: Recent progress in cloud physics research in China. Adv. Atmos. Sci., 24, 1121−1137, https://doi.org/10.1007/s00376-007-1121-7.
McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 3405−3428, https://doi.org/10.1175/MWR3444.1.
Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975−995, https://doi.org/10.1175/JAS-D-15-0204.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682, https://doi.org/10.1029/97JD00237.
Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982−3002, https://doi.org/10.1175/MWR-D-11-00292.1.
Molthan, A. L., B. A. Colle, S. E. Yuter, and D. Stark, 2016: Comparisons of modeled and observed reflectivities and fall speeds for snowfall of varied riming degrees during winter storms on Long Island, New York. Mon. Wea. Rev., 144, 4327−4347, https://doi.org/10.1175/MWR-D-15-0397.1.
Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528−1548, https://doi.org/10.1175/2007JAS2491.1.
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665−1677, https://doi.org/10.1175/JAS3446.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other Schemes. J. Atmos. Sci., 72, 312−339, https://doi.org/10.1175/JAS-D-14-0066.1.
Naeger, A. R., B. A. Colle, and A. Molthan, 2017: Evaluation of cloud microphysical schemes for a warm frontal snowband during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 4627−4650, https://doi.org/10.1175/MWR-D-17-0081.1.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071−1107, https://doi.org/10.1002/qj.49712454804.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949−2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739−1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117−133, https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2.
Stoelinga, M. T., J. D. Locatelli, and C. P. Woods, 2007: The occurrence of " irregular” ice particles in stratiform clouds. J. Atmos. Sci., 64, 2740−2750, https://doi.org/10.1175/JAS3962.1.
Woods, C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1−2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 3927−3948, https://doi.org/10.1175/2007JAS2239.1.
Woods, C. P., J. D. Locatelli, and M. T. Stoelinga, 2008: The IMPROVE-1 storm of 1−2 February 2001. Part IV: Precipitation enhancement across the melting layer. J. Atmos. Sci., 65, 1087−1092, https://doi.org/10.1175/2007JAS2247.1.
Yang, J. F., H. C. Lei, Z. X. Hu, and T. J. Hou, 2014: Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmospheric Research, 142, 79−90, https://doi.org/10.1016/j.atmosres.2013.12.018.
Yang, J. F., H. C. Lei, and T. J. Hou, 2017: Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China. Adv. Atmos. Sci., 34, 509−520, https://doi.org/10.1007/s00376-016-6079-x.
Zhang, D. M., Z. E. Wang, P. Kollias, A. M. Vogelmann, K. Yang, and T. Luo, 2018: Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmospheric Chemistry and Physics, 18, 4317−4327, https://doi.org/10.5194/acp-18-4317-2018.
Zhao, Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604−610, https://doi.org/10.1007/s00376-013-3083-2.
Zhu, S. C., X. L. Guo, G. X. Lu, and L. J. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci., 72, 2011−2032, https://doi.org/10.1175/JAS-D-14-0194.1.