Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014−16 NOAA/hazardous weather testbed spring forecasting experiments. Wea. Forecasting, 34, 61−79, https://doi.org/10.1175/WAF-D-18-0024.1.
Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32(3), 1101−1119, https://doi.org/10.1175/WAF-D-16-0203.1.
Blair, S. F., and Coauthors, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6(7), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/87.
Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499−533, https://doi.org/10.1002/qj.49710243303.
Chen, B. J., K. L. Zheng, and X. L. Guo, 2012: Numerical investigation on the growth of large hail in a simulated supercell thunderstorm. Climatic and Environmental Research, 17(6), 767−778, https://doi.org/10.3878/j.issn.1006-9585.2012.06.14. (in Chinese with English abstract
Cholette, M., H. Morrison, J. A. Milbrandt, and J. M. Thériault, 2019: Parameterization of the bulk liquid fraction on mixed-phase particles in the predicted particle properties (P3) scheme: Description and idealized simulations. J. Atmos. Sci., 76(2), 561−582, https://doi.org/10.1175/JAS-D-18-0278.1.
Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 2511−2528, https://doi.org/10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.
Dawson II, D. T., M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143(6), 2241−2265, https://doi.org/10.1175/MWR-D-14-00279.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641−663, https://doi.org/10.1175/JAS-D-16-0066.1.
Farnell, C., T. Rigo, and A. Heymsfield, 2022: Shape of hail and its thermodynamic characteristics related to records in Catalonia. Atmospheric Research, 271, 106098, https://doi.org/10.1016/j.atmosres.2022.106098.
Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions. J. Appl. Meteorol. Climatol., 23, 84−101, https://doi.org/10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.
Gagne II, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819−1840, https://doi.org/10.1175/WAF-D-17-0010.1.
Groenemeijer, P. H., and A. van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmospheric Research, 83, 473−487, https://doi.org/10.1016/j.atmosres.2005.08.006.
Heymsfield, A. J., 1983: Case study of a halistorm in Colorado. Part IV: Graupel and hail growth mechanisms deduced through particle trajectory calculations. J. Atmos. Sci., 40, 1482−1509, https://doi.org/10.1175/1520-0469(1983)040<1482:CSOAHI>2.0.CO;2.
Heymsfield, A. J., A. R. Jameson, and H. W. Frank, 1980: Hail growth mechanisms in a Colorado storm: Part II: Hail formation processes. J. Atmos. Sci., 37, 1779−1807, https://doi.org/10.1175/1520-0469(1980)037<1779:HGMIAC>2.0.CO;2.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944.
Jain, A. K., and R. C. Dubes, 1988: Algorithms for Clustering Data. Prentice Hall.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, Eleventh Conf. on Numerical Weather Prediction, 19−23 August 1996, Norfolk, VA, Amer. Meteor. Soc., 354−355.
Johnson, A. W., and K. E. Sugden, 2014: Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events. Electron. J. Severe Storms Meteorol., 9(5), 1−42, https://doi.org/10.55599/ejssm.v9i5.57.
Kaltenböck, R., G. Diendorfer, and N. Dotzek, 2009: Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmospheric Research, 93, 381−396, https://doi.org/10.1016/j.atmosres.2008.11.005.
Kennedy, P. C., and A. G. Detwiler, 2003: A case study of the origin of hail in a multicell thunderstorm using in situ aircraft and polarimetric radar data. J. Appl. Meteorol., 42, 1679−1690, https://doi.org/10.1175/1520-0450(2003)042<1679:ACSOTO>2.0.CO;2.
Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 2765−2791, https://doi.org/10.1175/JAS-D-20-0016.1.
Kumjian, M.R., Lombardo, K. and Loeffler, S., 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78(11), 3417−3440, https://doi.org/10.1175/JAS-D-21-0034.1.
Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka, 2018: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. Quart. J. Roy. Meteor. Soc., 144, 231−250, https://doi.org/10.1002/qj.3197.
Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138(5), 1587−1612, https://doi.org/10.1175/2009MWR2968.1.
Lin, Y. Z., and M. R. Kumjian, 2022: Influences of CAPE on hail production in simulated supercell storms. J. Atmos. Sci., 79(1), 179−204, https://doi.org/10.1175/JAS-D-21-0054.1.
Liu, X. L., C. Y. Yuan, J. R. Sang, and S. M. Ma, 2021: Effect of cloud condensation nuclei concentration on a hail event with weak warm rain process in a semi-arid region of China. Atmospheric Research, 261, 105726, https://doi.org/10.1016/j.atmosres.2021.105726.
Loftus, A. M., and W. R. Cotton, 2014: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmospheric Research, 150, 97−128, https://doi.org/10.1016/j.atmosres.2014.07.016.
Luo, L. P., M. Xue, K. F. Zhu, and B. W. Zhou, 2017: Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in Eastern China. J. Geophys. Res. Atmos., 122, 7560−7581, https://doi.org/10.1002/2017JD026747.
Luo, L. P., M. Xue, K. F. Zhu, and B. W. Zhou, 2018: Explicit prediction of hail in a long-lasting multicellular convective system in Eastern China using multimoment microphysics schemes. J. Atmos. Sci., 75, 3115−3137, https://doi.org/10.1175/JAS-D-17-0302.1.
Luo, L. P., M. Xue, K. F. Zhu, and Z. M. Wang, 2021: Diagnosing the shape parameters of the gamma particle size distributions in a two-moment microphysics scheme and improvements to explicit hail prediction. Atmospheric Research, 258, 105651, https://doi.org/10.1016/j.atmosres.2021.105651.
Mesinger, F., 1993: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. in Atmos. and Ocean. Mod., WMO, Geneva, CAS/JSC WGNE Rep. No. 18, 4.28−4.29.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051−3064, https://doi.org/10.1175/JAS3534.1.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065−3081, https://doi.org/10.1175/JAS3535.1.
Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63(12), 3114−3136, https://doi.org/10.1175/JAS3816.1.
Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73(3), 975−995, https://doi.org/10.1175/JAS-D-15-0204.1.
Milbrandt, J. A., H. Morrison, D. T. Dawson II, and M. Paukert, 2021: A triple-moment representation of ice in the predicted particle properties (P3) microphysics scheme. J. Atmos. Sci., 78(2), 439−458, https://doi.org/10.1175/JAS-D-20-0084.1.
Miller, L. J., and J. C. Fankhauser, 1983: Radar echo structure, air motion and hail formation in a large stationary multicellular thunderstorm. J. Atmos. Sci., 40, 2399−2418, https://doi.org/10.1175/1520-0469(1983)040<2399:RESAMA>2.0.CO;2.
Miller, L. J., J. D. Tuttle, and C. A. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736−762, https://doi.org/10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2.
Miller, L. J., J. D. Tuttle, and G. B. Foote, 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 1619−1646, https://doi.org/10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2.
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72(1), 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137(3), 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.
Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a high plains supercell thunderstorm. J. Appl. Meteorol. Climatol., 25, 1037−1051, https://doi.org/10.1175/1520-0450(1986)025<1037:MCOAWD>2.0.CO;2.
Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965−1983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.
Nelson, S. P., 1987: The hybrid multicellular-supercellular storm—An efficient hail producer. Part II. General characteristics and implications for hail growth. J. Atmos. Sci., 44, 2060−2073, https://doi.org/10.1175/1520-0469(1987)044<2060:THMSEH>2.0.CO;2.
Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteorol., 13(1), 1−36, https://doi.org/10.55599/ejssm.v13i1.69.
Paluch, I. R., 1978: Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J. Appl. Meteorol. Climatol., 17, 763−777, https://doi.org/10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2.
Paukert, M., J. Fan, P. J. Rasch, H. Morrison, J. A. Milbrandt, J. Shpund, and A. Khain, 2019: Three-moment representation of rain in a bulk microphysics model. Journal of Advances in Modeling Earth Systems, 11, 257−277, https://doi.org/10.1029/2018MS001512.
Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 1385−1403, https://doi.org/10.1175/MWR-D-11-00112.1.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed., Kluwer Academic Publishers, 954 pp.
Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part III: Investigation of the role of shed drops as hail embryos in the 1 August CCOPE severe storm. J. Atmos. Sci., 44, 2783−2803, https://doi.org/10.1175/1520-0469(1987)044<2783:MASOGA>2.0.CO;2.
Raupach, T. H., and Coauthors, 2021: The effects of climate change on hailstorms. Nature Reviews Earth & Environment, 2(3), 213−226, https://doi.org/10.1038/s43017-020-00133-9.
Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., 92, 45−66, https://doi.org/10.1007/s00703-005-0112-4.
Taszarek, M., H. E. Brooks, and B. Czernecki, 2017: Sounding-derived parameters associated with convective hazards in Europe. Mon. Wea. Rev., 145, 1511−1528, https://doi.org/10.1175/MWR-D-16-0384.1.
Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 4127−4150, https://doi.org/10.1175/JAS3585.1.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 11−15.
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71(10), 3636−3658, https://doi.org/10.1175/JAS-D-13-0305.1.
Wang, S. W., and H. B. Xu, 1989: The simulation of travel-growth trajectories of large hailstones for various airflow patterns of hailstorms. Journal of Academy of Meteorological Science, 4(2), 171−177. (in Chinese with English abstract)
Xu, H. B., and Y. Duan, 2001: The mechanism of hailstone′s formation and the hail-suppression hypothesis: “Beneficial competition”. Chinese Journal of Atmospheric Sciences, 25(2), 277−288. (in Chinese with English abstract)
Yin, L., F. Ping, H. B. Xu, and B. J. Chen, 2021: Numerical simulation and the underlying mechanism of a severe hail-producing convective system in East China. J. Geophys. Res. Atmos., 126(11), e2019JD032285, https://doi.org/10.1029/2019JD032285.
Zhou, Z. W., Q. H. Zhang, J. T. Allen, X. Ni, and C.-P. Ng, 2021: How many types of severe hailstorm environments are there globally. Geophys. Res. Lett., 48, e2021GL095485, https://doi.org/10.1029/2021GL095485.
Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 1768−1791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.