Albright, M. D., D. R. Mock, E. E. Recker, and R. J. Reed, 1981: A diagnostic study of the diurnal rainfall variation in the GATE B-scale area. J. Atmos. Sci., 38, 1429−1445, https://doi.org/10.1175/1520-0469(1981)038<1429:ADSOTD>2.0.CO;2.
Albright, M. D., E. E. Recker, R. J. Reed, and R. Q. Dang, 1985: The diurnal variation of deep convection and inferred precipitation in the central tropical Pacific during January-February 1979. Mon. Wea. Rev., 113, 1663−1680, https://doi.org/10.1175/1520-0493(1985)113<1663:TDVODC>2.0.CO;2.
Aldrian, E., and R. Dwi Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23, 1435−1452, https://doi.org/10.1002/joc.950.
Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1−35, https://doi.org/10.1029/RG011i001p00001.
Augustine, J. A., 1984: The diurnal variation of large-scale inferred rainfall over the tropical Pacific Ocean during August 1979. Mon. Wea. Rev., 112, 1745−1751, https://doi.org/10.1175/1520-0493(1984)112<1745:TDVOLS>2.0.CO;2.
Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteorol., 39, 760−777, https://doi.org/10.1175/1520-0450(2000)039<0760:DSDCIT>2.0.CO;2.
Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838−851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.
Fukao, S., and Coauthors, 2003: Equatorial Atmosphere Radar (EAR): System description and first results. Radio Sci., 38, 1053, https://doi.org/10.1029/2002RS002767.
Geerts, B., and T. Dejene, 2015: Regional and diurnal variability of the vertical structure of precipitation systems in Africa based on spaceborne radar data. J. Climate, 18, 893−916, https://doi.org/10.1175/JCLI-3316.1.
Hamilton, K., 1981: A note on the observed diurnal and semidiurnal rainfall variations. J. Geophys. Res., 86, 12, https://doi.org/10.1029/JC086iC12p12122.
Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. H. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285−308, https://doi.org/10.1175/2009JAS3132.1.
Hu, Z. L., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 1761−1783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.
Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteorol., 35, 1688−1701, https://doi.org/10.1175/1520-0450(1996)035<1688:RSDATR>2.0.CO;2.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259−270, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2.
Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, 2006: Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. J. Meteorol. Soc. Japan, 84A, 195−209, https://doi.org/10.2151/jmsj.84A.195.
Kozu, T., T. Shimomai, Z. Akramin, Marzuki, Y. Shibagaki, and H. Hashiguchi, 2005: Intraseasonal variation of raindrop size distribution at Koto Tabang, West Sumatra, Indonesia. Geophys. Res. Lett., 32, L07803, https://doi.org/10.1029/2004GL022340.
Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteorol. Climatol., 49, 1247−1267, https://doi.org/10.1175/2010JAMC2243.1.
Lee, G. W., and I. Zawadzki, 2005: Variability of drop size distributions: Noise and noise filtering in disdrometric data. J. Appl. Meteorol., 44, 634−652, https://doi.org/10.1175/JAM2222.1.
Li, X. W., and R. C. Srivastava, 2001: An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteorol., 40, 1607−1616, https://doi.org/10.1175/1520-0450(2001)040<1607:AASFRE>2.0.CO;2.
Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, 2009: Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia. IEEE Trans. Antennas Propag., 57(4), 1191−1196, https://doi.org/10.1109/TAP.2009.2015812.
Marzuki, H. Hashiguchi, T. Kozu, T. Shimomai, Y. Shibagaki, and Y. Takahashi, 2016a: Precipitation microstructure in different Madden-Julian Oscillation phases over Sumatra. Atmospheric Research, 168, 121−138, https://doi.org/10.1016/j.atmosres.2015.08.022.
Marzuki, H. Hashiguchi, T. Shimomai, and W. L. Randeu, 2016b: Cumulative distributions of rainfall rate over Sumatra. Progress in Electromagnetics Research M, 49, 1−8, https://doi.org/10.2528/PIERM16043007.
Marzuki, H. Hashiguchi, T. Shimomai, I. Rahayu, M. Vonnisa, and Afdal, 2016c: Performance evaluation of Micro Rain Radar over Sumatra through comparison with disdrometer and wind profiler. Progress in Electromagnetics Research M, 50, 33−46, https://doi.org/10.2528/PIERM16072808.
Marzuki, H. Hashiguchi, M. Vonnisa, Harmadi, and M. Katsumata, 2018a: Determination of intraseasonal variation of precipitation microphysics in the Southern Indian Ocean from Joss-Waldvogel Disdrometer observation during the CINDY Field Campaign. Adv. Atmos. Sci., 35(11), 1415−1427, https://doi.org/10.1007/s00376-018-8026-5.
Marzuki, H. Hashiguchi, M. Vonnisa, Harmadi, and Muzirwan, 2018b: Long-term change in rainfall rate and melting layer height in Indonesia. Proc. 2018 Progress in Electromagnetics Research Symposium, Toyama, IEEE, https://doi.org/10.23919/PIERS.2018.8597606.
Marzuki, H. Hashiguchi, M. Vonnisa, Harmadi, Muzirwan, S. Nugroho, and M. Yoseva, 2018c: Z-R relationships for weather radar in Indonesia from the particle size and velocity (Parsivel) optical disdrometer. Proc. Progress in Electromagnetics Research Symposium, Toyama, IEEE, https://doi.org/10.23919/PIERS.2018.8597693.
Marzuki, H. Hashiguchi, M. Vonnisa, and Harmadi, 2018d: Seasonal and diurnal variations of vertical profile of precipitation over Indonesian maritime continent, engineering and mathematical topics in rainfall. Theodore V Hromadka II and Prasada Rao, Eds., IntechOpen. https://doi.org/10.5772/intechopen.74044.
Marzuki, T. Kozu, T. Shimomai, H. Hashiguchi, W. L. Randeu, and M. Vonnisa, 2010: Raindrop size distributions of convective rain over equatorial Indonesia during the first CPEA campaign. Atmospheric Research, 96, 645−655, https://doi.org/10.1016/j.atmosres.2010.03.002.
Marzuki, W. L. Randeu, T. Kozu, T. Shimomai, H. Hashiguchi, and M. Schönhuber, 2013a: Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement. Atmospheric Research, 119, 23−37, https://doi.org/10.1016/j.atmosres.2011.08.006.
Marzuki, M., H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka, 2013b: Regional variability of raindrop size distribution over Indonesia. Annales Geophysicae, 31, 1941−1948, https://doi.org/10.5194/angeo-31-1941-2013.
Mori, S., H. Jun-Ichi, Y. I. Tauhid, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, H. Hashiguchi, and T. Sribimawati, 2004: Diurnal land-sea rainfall peak migration over Sumatera island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 2021−2039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.
Nauval, F., Marzuki, and H. Hashiguchi, 2017: Regional and diurnal variations of rain attenuation obtained from measurement of raindrop size distribution over Indonesia at Ku, Ka and W Bands. Progress in Electromagnetics Research M, 57, 25−34, https://doi.org/10.2528/PIERM17030503.
Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteorol., 44, 1930−1949, https://doi.org/10.1175/JAM2316.1.
Radhakrishna, B., T. N. Rao, D. N. Rao, N. P. Rao, K. Nakamura, and A. K. Sharma, 2009: Spatial and seasonal variability of raindrop size distributions in southeast India. J. Geophys. Res., 114, D04203, https://doi.org/10.1029/2008JD011226.
Renggono, F., M. K. Yamamoto, H. Hashiguchi, S. Fukao, T. Shimomai, M. Kawashima, and M. Kudsy, 2006: Raindrop size distribution observed with the Equatorial Atmosphere Radar (EAR) during the Coupling Processes in the Equatorial Atmosphere (CPEA-I) observation campaign. Radio Sci., 41, RS5002, https://doi.org/10.1029/2005RS003333.
Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, R. M. Wakimoto and R. Srivastava, Eds., American Meteorological Society, 237−258, https://doi.org/10.1007/978-1-878220-36-3_10.
Sarma, A. C., A. Deshamukhya, T. N. Rao, and S. Sharma, 2016: A study of raindrop size distribution during stratiform rain and development of its parameterization scheme in the framework of multi-parameter observations. Meteorological Applications, 23, 254−268, https://doi.org/10.1002/met.1551.
Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739−1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Seela, B. K., J. Janapati, P. L. Lin, K. K. Reddy, R. Shirooka, and P. K. Wang, 2017: A comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in western Pacific. J. Geophys. Res., 122(11), 11 787−11 805, https://doi.org/10.1002/2017JD026816.
Sui, C. H., K. M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639−655, https://doi.org/10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.
Tian, B. J., B. J. Soden, and X. Q. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, https://doi.org/10.1029/2003JD004117.
Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol., 35, 355−371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.
Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672−1690, https://doi.org/10.1175/JTECH-D-12-00163.1.
Ushiyama, T., K. K. Reddy, H. Kubota, K. Yasunaga, and R. Shirooka, 2009: Diurnal to interannual variation in the raindrop size distribution over Palau in the western tropical Pacific. Geophys. Res. Lett., 36, L02810, https://doi.org/10.1029/2008GL036242.
Wang, H., H. C. Lei, and J. F. Yang, 2017: Microphysical processes of a stratiform precipitation event over Eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci., 34(12), 1472−1482, https://doi.org/10.1007/s00376-017-7005-6.
Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteorol. Soc., 60, 1048−1060, https://doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2.
Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784−801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.
Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 3705−3723, https://doi.org/10.1175/JAS3563.1.