Abraham, J., L. J. Cheng, M. E. Mann, K. Trenberth, and K. von Schuckmann, 2022: The ocean response to climate change guides both adaptation and mitigation efforts. Atmospheric and Oceanic Science Letters, 15, 100221, https://doi.org/10.1016/j.aosl.2022.100221.
Abraham, J., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450−483, https://doi.org/10.1002/rog.20022.
Argo, 2022: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE,
Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9, 549−554, https://doi.org/10.1038/ngeo2731.
Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.
Cheng, L., and Coauthors, 2022a: Past and future ocean warming. Nature Reviews Earth & Environment, 3, 776−794, https://doi.org/10.1038/s43017-022-00345-1.
Cheng, L. J., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31(8), 1793−1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L. J., G. Foster, Z. Hausfather, K. E. Trenberth, and J. Abraham, 2022b: Improved quantification of the rate of ocean warming. J. Climate, 35, 4827−4840, https://doi.org/10.1175/JCLI-D-21-0895.1.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017a: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 3529−3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, J. P. Abraham, T. P. Boyer, K. von Schuckmann, and J. Zhu, 2017b: Taking the pulse of the planet. EOS, 98, 14−15, https://doi.org/10.1029/2017EO081839.
Cheng, L., K. E. Trenberth, N. Gruber, J. P. Abraham,J. T. Fasullo, G. Li, M. E. Mann, X. Zhao, and J. Zhu, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim., 33, 10357−10381, https://doi.org/10.1175/JCLI-D-20-0366.1.
Cowley R., and Coauthors, 2021: International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification. Front. Mar. Sci., 8: 689695. https://doi.org/10.3389/fmars.2021.689695.
Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4, 398−403, https://doi.org/10.1038/ngeo1129.
Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 20−31, https://doi.org/10.5670/oceanog.2015.03.
Escudier, R., and Coauthors, 2020: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MU LTIYEAR_PHY_006_004_E3R1.
Escudier, R., and Coauthors, 2021: A High Resolution Reanalysis for the Mediterranean Sea. Front. Earth Sci. 9:702285. https:/doi.org/10.3389/feart.2021.702285.
Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944−12 949,
Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled Climate Responses to Recent Australian Wildfire and COVID-19 Emissions Anomalies Estimated in CESM2, Geo. Res. Lett.,
Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104−112, https://doi.org/10.1002/2014GL062509.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nature Climate Change, 11, 689−695, https://doi.org/10.1038/s41558-021-01092-9.
Gouretski, V., and L. J. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Oceanic Technol., 37(5), 841−855, https://doi.org/10.1175/JTECH-D-19-0205.1.
Gouretski, V., L. J. Cheng, and T. Boyer, 2022: On the consistency of the bottle and CTD profile data. J. Atmos. Oceanic Technol., 39(12), 1869−1887, https://doi.org/10.1175/JTECH-D-22-0004.1.
Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth's energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13 421−13 449,
Huang, R. X., L. S. Yu, and S. Q. Zhou, 2018: New definition of potential spicity by the least square method. J. Geophys. Res.: Oceans, 123(10), 7351−7365, https://doi.org/10.1029/2018JC014306.
Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. Journal Oceanography, 65, 287−299, https://doi.org/10.1007/s10872-009-0027-7.
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72−S77.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0−2000 m), 1955−2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116−1123, https://doi.org/10.1038/s41558-020-00918-2.
Li, X. C., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2, 680−698, https://doi.org/10.1038/S43017-021-00204-5.
Li, Y. L., W. Q. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 9876−9884, https://doi.org/10.1002/2017GL075050.
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper-Indian Ocean thermal variability. J. Climate, 33, 7233−7253, https://doi.org/10.1175/JCLI-D-19-0851.1.
McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.
Murakami, H., 2022: Substantial global influence of anthropogenic aerosols on tropical cyclones over the past 40 years. Science Advances, 8, eabn9493, https://doi.org/10.1126/sciadv.abn9493.
Nguyen, P. L., S. K. Min, and Y. H. Kim, 2021: Combined impacts of the El Niño‐Southern Oscillation and Pacific decadal oscillation on global droughts assessed using the standardized precipitation evapotranspiration index. International Journal of Climatology, 41, E1645−E1662, https://doi.org/10.1002/joc.6796.
Nigam, T., and Coauthors, 2021: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/ CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I.
Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-Century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475−480, https://doi.org/10.1038/nclimate2554.
Ren, Q. P., Y.-O. Kwon, J. Y. Yang, R.-X. Huang, Y. L. Li, and F. Wang, 2022: Increasing inhomogeneity of the global oceans. Geophys. Res. Lett., 49, e2021GL097598, https://doi.org/10.1029/2021GL097598.
Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.
Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33(Suppl. 2), 1395−1409,
Simoncelli, S., and Coauthors., 2022: A collaborative framework among data producers, managers, and users. In: Manzella, G., Novellino, A. (Eds.), Ocean Science Data: Collection, Management, Networking and Services. Elsevier, pp. 197–280.
Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 19−32, https://doi.org/10.1002/2013EF000165.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311−324, https://doi.org/10.1175/2008BAMS2634.1.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth's energy imbalance. J. Climate, 27, 3129−3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth's Future, 6, 730−744, https://doi.org/10.1029/2018EF000825.
Truchelut, R. E., P. J. Klotzbach, E. M. Staehling, K. M. Wood, D. J. Halperin, C. J. Schreck, and E. S. Blake, 2022: Earlier onset of North Atlantic hurricane season with warming oceans. Nature Communications, 13, 4646, https://doi.org/10.1038/s41467-022-31821-3.
Vecchi, G. A., C. Landsea, W. Zhang, G. Villarini, and T. Knutson, 2021: Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 12, 4054, https://doi.org/10.1038/s41467-021-24268-5.
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.
von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138−144, https://doi.org/10.1038/nclimate2876.
von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013−2041, https://doi.org/10.5194/essd-12-2013-2020.
Wang, G. J., and Coauthors, 2022: Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 12, 649−654, https://doi.org/10.1038/s41558-022-01398-2.
Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. De Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 78−82, https://doi.org/10.1038/nclimate1627.
Yu, L. S., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Annals of the New York Academy of Sciences, 1472, 76−94, https://doi.org/10.1111/nyas.14354.
Zika, J. D., N. Skliris, A. T. Blaker, R. Marsh, A. J. G. Nurser, and S. A. Josey, 2018: Improved estimates of water cycle change from ocean salinity: The key role of ocean warming. Environmental Research Letters, 13, 074036, https://doi.org/10.1088/1748-9326/aace42.