Årthun, M., I. H. Onarheim, J. Dörr, and T. Eldevik, 2021: The seasonal and regional transition to an ice-free Arctic. Geophys. Res. Lett., 48, e2020GL090825, https://doi.org/10.1029/2020GL090825.
Bekkers, E., J. F. Francois, and H. Rojas-Romagosa, 2018: Melting ice caps and the economic impact of opening the Northern Sea Route. The Economic Journal, 128, 1095−1127, https://doi.org/10.1111/ecoj.12460.
Bliss, A. C., and M. R. Anderson, 2018: Arctic sea ice melt onset timing from passive microwave-based and surface air temperature-based methods. J. Geophys. Res.: Atmos., 123, 9063−9080, https://doi.org/10.1029/2018JD028676.
Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, and M. H. Savoie, 2012: EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS International Journal of Geo-Information, 1, 32−45, https://doi.org/10.3390/ijgi1010032.
Browse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett, 2013: Impact of future Arctic shipping on high-latitude black carbon deposition. Geophys. Res. Lett., 40, 4459−4463, https://doi.org/10.1002/grl.50876.
Cao, Y. F., and Coauthors, 2022: Trans-Arctic shipping routes expanding faster than the model projections. Global Environmental Change, 73, 102488, https://doi.org/10.1016/j.gloenvcha.2022.102488.
Chen, J. L., and Coauthors, 2020: Changes in sea ice and future accessibility along the Arctic Northeast Passage. Global and Planetary Change, 195, 103319, https://doi.org/10.1016/j.gloplacha.2020.103319.
Chen, J. L., and Coauthors, 2021: Perspectives on future sea ice and navigability in the Arctic. The Cryosphere, 15, 5473−5482, https://doi.org/10.5194/tc-15-5473-2021.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Dawson, G., J. Landy, M. Tsamados, A. S. Komarov, S. Howell, H. Heorton, and T. Krumpen, 2022: A 10-year record of Arctic summer sea ice freeboard from CryoSat-2. Remote Sens. Environ., 268, 112744, https://doi.org/10.1016/j.rse.2021.112744.
Dijkstra, E. W., 1959: A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269−271, https://doi.org/10.1007/BF01386390.
Eguíluz, V. M., J. Fernández-Gracia, X. Irigoien, and C. M. Duarte, 2016: A quantitative assessment of Arctic shipping in 2010–2014. Scientific Reports, 6, 30682, https://doi.org/10.1038/srep30682.
Farré, A. B., and Coauthors, 2014: Commercial Arctic shipping through the Northeast Passage: Routes, resources, governance, technology, and infrastructure. Polar Geography, 37, 298−324, https://doi.org/10.1080/1088937X.2014.965769.
Gunnarsson, B., 2021: Recent ship traffic and developing shipping trends on the Northern Sea Route—Policy implications for future arctic shipping. Marine Policy, 124, 104369, https://doi.org/10.1016/j.marpol.2020.104369.
Gunnarsson, B., and A. Moe, 2021: Ten years of international shipping on the Northern Sea Route: Trends and challenges. Arctic Review, 12, 4−30, https://doi.org/10.23865/arctic.v12.2614.
Hauser, D. D. W., K. L. Laidre, and H. L. Stern, 2018: Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proceedings of the National Academy of Sciences of the United States of America, 115, 7617−7622, https://doi.org/10.1073/pnas.1803543115.
IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Ji, M., G. C. Liu, Y. W. He, Y. Li, and T. Li, 2021: Analysis of sea ice timing and navigability along the Arctic Northeast Passage from 2000 to 2019. Journal of Marine Science and Engineering, 9, 728, https://doi.org/10.3390/JMSE9070728.
Khon, V. C., I. I. Mokhov, and V. A. Semenov, 2017: Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations. Environmental Research Letters, 12, 024010, https://doi.org/10.1088/1748-9326/aa5841.
Khon, V. C., I. I. Mokhov, M. Latif, V. A. Semenov, and W. Park, 2010: Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Climatic Change, 100, 757−768, https://doi.org/10.1007/s10584-009-9683-2.
Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environmental Research Letters, 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec.
Labe, Z., G. Magnusdottir, and H. Stern, 2018: Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble. J. Climate, 31, 3233−3247, https://doi.org/10.1175/JCLI-D-17-0436.1.
Lasserre, F., and S. Pelletier, 2011: Polar super seaways? Maritime transport in the Arctic: An analysis of shipowners’ intentions Journal of Transport Geography, 19, 1465−1473, https://doi.org/10.1016/j.jtrangeo.2011.08.006.
Lei, R. B., H. J. Xie, J. Wang, M. Leppäranta, I. Jónsdóttir, and Z. H. Zhang, 2015: Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012. Cold Regions Science and Technology, 119, 132−144, https://doi.org/10.1016/j.coldregions.2015.08.004.
Li, X. Y., N. Otsuka, and L. W. Brigham, 2021a: Spatial and temporal variations of recent shipping along the Northern Sea Route. Polar Science, 27, 100569, https://doi.org/10.1016/j.polar.2020.100569.
Li, X. K., A. H. Lynch, D. A. Bailey, S. R. Stephenson, and S. Veland, 2021b: The impact of black carbon emissions from projected Arctic shipping on regional ice transport. Climate Dyn., 57, 2453−2466, https://doi.org/10.1007/s00382-021-05814-9.
Li, X. K., S. R. Stephenson, A. H. Lynch, M. A. Goldstein, D. A. Bailey, and S. Veland, 2021c: Arctic shipping guidance from the CMIP6 ensemble on operational and infrastructural timescales. Climatic Change, 167, 23, https://doi.org/10.1007/s10584-021-03172-3.
Liang, H. J., and J. Su, 2021: Variability in sea ice melt onset in the Arctic northeast passage: Seesaw of the Laptev Sea and the East Siberian Sea. J. Geophys. Res.: Oceans, 126, e2020JC016985, https://doi.org/10.1029/2020JC016985.
Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9, 269−283, https://doi.org/10.5194/tc-9-269-2015.
Lindsey, R., and M. Scott, 2020: Climate Change: Arctic sea ice summer minimum. Climate. gov. September, 8. [Available online at https://www.climate.gov/news-features/understanding-climate/climate-change-arctic-sea-ice-summer-minimum.]
Lindstad, H. E., and G. S. Eskeland, 2016: Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny. Transportation Research Part D: Transport and Environment, 47, 67−76, https://doi.org/10.1016/j.trd.2016.05.004.
Liu, M. J., and J. Kronbak, 2010: The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. Journal of Transport Geography, 18, 434−444, https://doi.org/10.1016/j.jtrangeo.2009.08.004.
Liu, X.-H., L. Ma, J.-Y. Wang, Y. Wang, and L.-N. Wang, 2017: Navigable windows of the Northwest Passage. Polar Science, 13, 91−99, https://doi.org/10.1016/j.polar.2017.02.001.
Lynch, A. H., C. H. Norchi, and X. K. Li, 2022: The interaction of ice and law in Arctic marine accessibility. Proceedings of the National Academy of Sciences of the United States of America, 119, e2202720119, https://doi.org/10.1073/pnas.2202720119.
McCallum, J., 1996: Safe Speed in Ice: An Analysis of Transit Speed and Ice Decision Numerals. Ottawa, ON, Canada: Ship Safety Northern (AMNS) Transport Canada. ENFOTEC Technical Services Inc., GeoInfo Solutions Ltd. [Available online at http://www.geoinfosolutions.com/projects/Safeice.pdf.]
Melia, N., K. Haines, and E. Hawkins, 2016: Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett., 43, 9720−9728, https://doi.org/10.1002/2016GL069315.
Miller, A. W., and G. M. Ruiz, 2014: Arctic shipping and marine invaders. Nature Climate Change, 4, 413−416, https://doi.org/10.1038/nclimate2244.
Min, C., Q. H. Yang, D. K. Chen, Y. J. Yang, X. Y. Zhou, Q. Shu, and J. P. Liu, 2022: The emerging Arctic shipping corridors. Geophys. Res. Lett., 49, e2022GL099157, https://doi.org/10.1029/2022GL099157.
Mudryk, L. R., J. Dawson, S. E. L. Howell, C. Derksen, T. A. Zagon, and M. Brady, 2021: Impact of 1, 2 and 4 °C of global warming on ship navigation in the Canadian Arctic. Nature Climate Change, 11, 673−679, https://doi.org/10.1038/s41558-021-01087-6.
Notz, D., and SIMIP Community, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.
Parkinson, C. L., 2014: Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett., 41, 4316−4322, https://doi.org/10.1002/2014GL060434.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11, 1607−1623, https://doi.org/10.5194/tc-11-1607-2017.
Rogers, T. S., J. E. Walsh, T. S. Rupp, L. W. Brigham, and M. Sfraga, 2013: Future Arctic marine access: Analysis and evaluation of observations, models, and projections of sea ice. The Cryosphere, 7, 321−332, https://doi.org/10.5194/tc-7-321-2013.
Schøyen, H., and S. Bråthen, 2011: The Northern Sea Route versus the Suez Canal: Cases from bulk shipping. Journal of Transport Geography, 19, 977−983, https://doi.org/10.1016/j.jtrangeo.2011.03.003.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res.: Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084.
Schweiger, A. J., K. R. Wood, and J. L. Zhang, 2019: Arctic sea ice volume variability over 1901–2010: A model-based reconstruction. J. Climate, 32, 4731−4752, https://doi.org/10.1175/JCLI-D-19-0008.1.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110, E1191−E1195, https://doi.org/10.1073/pnas.1214212110.
Stephenson, S. R., and L. C. Smith, 2015: Influence of climate model variability on projected Arctic shipping futures. Earth's Future, 3, 331−343, https://doi.org/10.1002/2015EF000317.
Stephenson, S. R., L. C. Smith, and J. A. Agnew, 2011: Divergent long-term trajectories of human access to the Arctic. Nature Climate Change, 1, 156−160, https://doi.org/10.1038/nclimate1120.
Stephenson, S. R., L. W. Brigham, and L. C. Smith, 2014: Marine accessibility along Russia's Northern Sea Route. Polar Geography, 37, 111−133, https://doi.org/10.1080/1088937X.2013.845859.
Stephenson, S. R., W. S. Wang, C. S. Zender, H. L. Wang, S. J. Davis, and P. J. Rasch, 2018: Climatic responses to future trans-Arctic shipping. Geophys. Res. Lett., 45, 9898−9908, https://doi.org/10.1029/2018GL078969.
Tian-Kunze, X., L. Kaleschke, N. Maaß, M. Mäkynen, N. Serra, M. Drusch, and T. Krumpen, 2014: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. The Cryosphere, 8, 997−1018, https://doi.org/10.5194/tc-8-997-2014.
Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn., 52, 1613−1650, https://doi.org/10.1007/s00382-018-4242-z.
Wang, X. J., J. Key, R. Kwok, and J. L. Zhang, 2016: Comparison of Arctic sea ice thickness from satellites, aircraft, and PIOMAS data. Remote Sensing, 8, 713, https://doi.org/10.3390/rs8090713.
Watts, M., W. Maslowski, Y. J. Lee, J. C. Kinney, and R. Osinski, 2021: A spatial evaluation of Arctic sea ice and regional limitations in CMIP6 historical simulations. J. Climate, 34, 6399−6420, https://doi.org/10.1175/JCLI-D-20-0491.1.
Wei, T., Q. Yan, W. Qi, M. H. Ding, and C. Y. Wang, 2020: Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environmental Research Letters, 15, 104079, https://doi.org/10.1088/1748-9326/abb2c8.
Xiu, Y., C. Min, J. P. Xie, L. J. Mu, B. Han, and Q. H. Yang, 2021: Evaluation of sea-ice thickness reanalysis data from the coupled ocean-sea-ice data assimilation system TOPAZ4. J. Glaciol., 67, 353−365, https://doi.org/10.1017/jog.2020.110.
Xiu, Y., H. Luo, Q. H. Yang, S. Tietsche, J. Day, and D. K. Chen, 2022: The challenge of Arctic sea ice thickness prediction by ECMWF on subseasonal time scales. Geophys. Res. Lett., 49, e2021GL097476, https://doi.org/10.1029/2021GL097476.
Yu, M., P. Lu, Z. Y. Li, Z. J. Li, Q. K. Wang, X. W. Cao, and X. D. Chen, 2021: Sea ice conditions and navigability through the Northeast Passage in the past 40 years based on remote-sensing data. International Journal of Digital Earth, 14, 555−574, https://doi.org/10.1080/17538947.2020.1860144.
Yumashev, D., K. van Hussen, J. Gille, and G. Whiteman, 2017: Towards a balanced view of Arctic shipping: Estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Climatic Change, 143, 143−155, https://doi.org/10.1007/s10584-017-1980-6.
Zhang, J. L., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845−861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
Zhou, X. Y., C. Min, Y. J. Yang, J. C. Landy, L. J. Mu, and Q. H. Yang, 2021: Revisiting Trans-Arctic maritime navigability in 2011–2016 from the perspective of sea ice thickness. Remote Sensing, 13, 2766, https://doi.org/10.3390/rs13142766.