Barkmeijer, J., T. Iversen, and T. N. Palmer, 2003: Forcing singular vectors and other sensitive model structures. Quart. J. Roy. Meteorol. Soc., 129, 2401−2423, https://doi.org/10.1256/qj.02.126.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603−626, https://doi.org/10.1175/2008JAS2677.1.
Bhatia, K. T., D. S. Nolan, A. B. Schumacher, and M. DeMaria, 2017: Improving tropical cyclone intensity forecasts with PRIME. Wea. Forecasting, 32, 1353−1377, https://doi.org/10.1175/WAF-D-17-0009.1.
Birgin, E. C., J. Mario, Martinez, and M. Raydan, 2001: Algorithm 813: SPG-software for convex-constrained optimization. ACM Transactions on Mathematical Software, 27, 340−349, https://doi.org/10.1145/502800.502803.
Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteorol. Soc., 125, 2887−2908, https://doi.org/10.1002/qj.49712556006.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteorol. Soc., 95, 387−398, https://doi.org/10.1175/BAMS-D-12-00240.1.
Duan, Q. S., and P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351−2367, https://doi.org/10.1007/s00382-014-2369-0.
Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 65, 18452, https://doi.org/10.3402/tellusa.v65i0.18452.
Duan, W. S., B. Tian, and H. Xu, 2014: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677−1692, https://doi.org/10.1007/s00382-013-1993-4.
Ehrendorfer, M., R. M. Errico, and K. D. Raeder., 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627−1648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.
Emanuel, K., and F. Q. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 3739−3747, https://doi.org/10.1175/JAS-D-16-0100.1.
Emanuel, K., and F. Q. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 2315−2324, https://doi.org/10.1175/JAS-D-17-0008.1.
Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688−704, https://doi.org/10.1175/2009MWR2976.1.
Green, B. W., and F. Q. Zhang, 2013: Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2303−2324, https://doi.org/10.1175/MWR-D-12-00274.1.
Huo, Z. H., 2016: The application of nonlinear optimal perturbations methods in ensemble forecasting. PhD dissertation, University of Chinese Academy of Sciences, 108 pp. (in Chinese)
Judt, F., S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles. Quart. J. Roy. Meteorol. Soc., 142, 43−57, https://doi.org/10.1002/qj.2626.
Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF ensemble prediction system on tropical cyclone forecasts. Quart. J. Roy. Meteorol. Soc., 138, 2030−2046, https://doi.org/10.1002/qj.1942.
Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteorol. Soc., 143, 2315−2339, https://doi.org/10.1002/qj.3094.
Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble. Quart. J. Roy. Meteorol. Soc., 143, 408−422, https://doi.org/10.1002/qj.2931.
Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. Technical Memorandum 598.
Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteorol. Soc., 127, 709−731, https://doi.org/10.1002/qj.49712757222.
Reynolds, C. A., J. G. McLay, S. J. Goerss, E. A. Serra, D. Hodyss, and C. R. Sampson, 2011: Impact of resolution and design on the U. S. Navy global ensemble performance in the Tropics. Mon. Wea. Rev., 139, 2145−2155, https://doi.org/10.1175/2011MWR3546.1.
Sippel, J. A., and F. Q. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 1759−1778, https://doi.org/10.1175/2010JAS3172.1.
Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 3487−3506, https://doi.org/10.1175/MWR-D-16-0108.1.
Zou, X., F. Vandenberghe, M. Pondeca, and Y. H. Kuo, 1997: Introduction to Adjoint techniques and the MM5 Adjoint Modeling System. NCAR Technical Note, NCAR/TN-435- STR, 111 pp.