Abbs, D. J., and W. L. Physick, 1992: Sea-breeze observations and modelling: A review. Aust. Meteor. Mag., 41, 7−19.
Abulikemu, A., X. Xin, Y. Wang, J. F. Ding, S. S. Zhang, and W. Q. Shen, 2016: A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front. Atmospheric Research, 182, 10−19, https://doi.org/10.1016/j.atmosres.2016.07.003.
Baker, R. D., B. H. Lynn, A. Boone, W.-K. Tao, and J. Simpson, 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. Journal of Hydrometeorology, 2, 193−211, https://doi.org/10.1175/1525-7541(2001)002<0193:TIOSMC>2.0.CO;2.
Blanchard, D. O., and R. E. López, 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113, 1282−1299, https://doi.org/10.1175/1520-0493(1985)113<1282:SPOCIS>2.0.CO;2.
Boybeyi, Z., and S. Raman, 1992: A three-dimensional numerical sensitivity study of convection over the Florida peninsula. Bound.-Layer Meteorol., 60, 325−359, https://doi.org/10.1007/BF00155201.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Clark, P. A., K. A. Browning, R. M. Forbes, C. J. Morcrette, A. M. Blyth, and H. W. Lean, 2014: The evolution of an MCS over southern England. Part 2: Model simulations and sensitivity to microphysics. Quart. J. Roy. Meteor. Soc., 140, 458−479, https://doi.org/10.1002/qj.2142.
Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteorol., 137, 1−29, https://doi.org/10.1007/s10546-010-9517-9.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Etherton, B., and P. Santos, 2008: Sensitivity of WRF forecasts for south Florida to initial conditions. Wea. Forecasting, 23, 725−740, https://doi.org/10.1175/2007WAF2006115.1.
Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291−314, https://doi.org/10.1175/1520-0493(1995)123<0291:IODCAB>2.0.CO;2.
Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264−278, https://doi.org/10.1175/MWR-2852.1.
Hahmann, A. N., Y. B. Liu, and T. T. Warner, 2006: Mesoscale circulations over the Athens metropolitan area during the 2004 summer Olympic games. Proc. 6th Symposium on the Urban Environment and Forum on Managing our Physical and Natural Resources, Atlanta, GA, Amer. Meteor. Soc.
Hou, D. C., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. Journal of Hydrometeorology, 15, 2542−2557, https://doi.org/10.1175/JHM-D-11-0140.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Knievel, J. C., D. L. Rife, J. A. Grim, A. N. Hahmann, J. P. Hacker, M. Ge, and H. H. Fisher, 2010: A simple technique for creating regional composites of sea surface temperature from MODIS for use in operational mesoscale NWP. J. Appl. Meteorol. Climatol., 49, 2267−2284, https://doi.org/10.1175/2010JAMC2430.1.
Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 2942−2956, https://doi.org/10.1175/1520-0493(1995)123<2942:TCCSAR>2.0.CO;2.
Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc.
Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240−258, https://doi.org/10.1175/MWR-D-13-00082.1.
Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791−1806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343−360, https://doi.org/10.1175/BAMS-87-3-343.
Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124.
Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida peninsula. Mon. Wea. Rev., 119, 298−323, https://doi.org/10.1175/1520-0493(1991)119<0298:ATDNIO>2.0.CO;2.
Ogawa, S., W. M. Sha, T. Iwasaki, and Z. F. Wang, 2003: A numerical study on the interaction of a sea-breeze front with convective cells in the daytime boundary layer. J. Meteor. Soc. Japan, 81, 635−651, https://doi.org/10.2151/jmsj.81.635.
Rao, P. A., and H. E. Fuelberg, 2000: An investigation of convection behind the Cape Canaveral sea-breeze front. Mon. Wea. Rev., 128, 3437−3458, https://doi.org/10.1175/1520-0493(2000)128<3437:AIOCBT>2.0.CO;2.
Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern united states. Mon. Wea. Rev., 147, 4411−4435, https://doi.org/10.1175/MWR-D-19-0115.1.
Segal, M., M. Leuthold, R. W. Arritt, C. Anderson, and J. Shen, 1997: Small lake daytime breezes: Some observational and conceptual evaluations. Bull. Amer. Meteor. Soc., 78, 1135−1148, https://doi.org/10.1175/1520-0477(1997)078<1135:SLDBSO>2.0.CO;2.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Thompson, G., P. R. Field, R. M. Rasmussen, W. D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Trier, S. B., 2003: Convective storms: Convective initiation. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 560−569.
Xue, M. and W. Martin, 2006a: A high-resolution modeling study of the 24 May 2002 case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149−171.
Xue, M. and W. Martin, 2006b: A high-resolution modeling study of the 24 May 2002 case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172−191.