Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227−1230, https://doi.org/10.1126/science.245.4923.1227.
Alizadeh-Choobari, O., 2018: Impact of aerosol number concentration on precipitation under different precipitation rates. Meteorological Applications, 25(4), 596−605, https://doi.org/10.1002/met.1724.
Alizadeh-Choobari, O., and M. Gharaylou, 2017: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmospheric Research, 185, 53−64, https://doi.org/10.1016/j.atmosres.2016.10.021.
Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols-coupling between microphysics and dynamics. Atmospheric Research, 140−141, 38−60, https://doi.org/10.1016/j.atmosres.2014.01.009.
Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the amazon. Science, 303, 1337−1342, https://doi.org/10.1126/science.1092779.
Bao, J. W., S. A. Michelson, and E. D. Grell, 2016: Pathways to the production of precipitating hydrometeors and tropical cyclone development. Mon. Wea. Rev., 144, 2395−2420, https://doi.org/10.1175/MWR-D-15-0363.1.
Bao, J.-W., S. A. Michelson, and E. D. Grell, 2019: Microphysical process comparison of three microphysics parameterization schemes in the WRF model for an idealized squall-line case study. Mon. Wea. Rev., 147, 3093−3120, https://doi.org/10.1175/MWR-D-18-0249.1.
Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection Part II. Single initial distributions. J. Atmos. Sci., 31, 1825−1831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.
Bigg, E. K., 1953: The supercooling of water. Proceedings of the Physical Society. Section B, 66, 688−694, https://doi.org/10.1088/0370-1301/66/8/309.
Chen, J. P., and S. T. Liu, 2004: Physically based two-moment bulk water parameterization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 51−78, https://doi.org/10.1256/qj.03.41.
Cheng, C. T., W. C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quar. J. Roy. Meteor. Soc., 133, 283−297, https://doi.org/10.1002/qj.25.
Cheng, C. T., W. C. Wang, and J. P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research, 96, 461−476, https://doi.org/10.1016/j.atmosres.2010.02.005.
DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11217−11222, https://doi.org/10.1073/pnas.0910818107.
Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res.: Atmos., 114, D06202, https://doi.org/10.1029/2008JD011095.
Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 2417−2436, https://doi.org/10.1175/2010JAS3266.1.
Fan, J. W., Y. Wang, D. Rosenfeld, and X. H. Liu, 2016: Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73(11), 4221−4252, https://doi.org/10.1175/JAS-D-16-0037.1.
Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 2325−2342, https://doi.org/10.1175/1520-0469(1992)049<2325:POCGOD>2.0.CO;2.
Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26−28, https://doi.org/10.1038/249026a0.
Han, J.-Y., J.-J. Baik, and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504−520, https://doi.org/10.1175/JAS-D-11-071.1.
Huang, Y. J., Y. P. Wang, L. L. Xue, X. L. Wei, L. N. Zhang, and H. Y. Li, 2020: Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmospheric Research, 240, 104939, https://doi.org/10.1016/j.atmosres.2020.104939.
Kalina, E. A., K. Friedrich, H. Morrison, and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 4558−4580, https://doi.org/10.1175/JAS-D-14-0037.1.
Khadke, L., and S. Pattnaik, 2021: Impact of initial conditions and cloud parameterization on the heavy rainfall event of Kerala (2018). Modeling Earth Systems and Environment, https://doi.org/10.1007/s40808-020-01073-5.
Khain, A., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 2983−3001, https://doi.org/10.1175/JAS-3281.1.
Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639−2663, https://doi.org/10.1256/qj.04.62.
Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611−614, https://doi.org/10.1038/35020537.
Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.
Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmospheric Chemistry and Physics, 12(20), 9941−9964, https://doi.org/10.5194/acp-12-9941-2012.
Lee, S. S., L. J. Donner, and V. T. J. Phillips, 2009: Impacts of aerosol chemical composition on microphysics and precipitation in deep convection. Atmospheric Research, 94, 220−237, https://doi.org/10.1016/j.atmosres.2009.05.015.
Lee, S. S., C. H. Jung, S. Chiao, J. Um, Y. S. Choi, and W. J. Choi, 2019: Comparison of simulations of updraft mass fluxes and their response to increasing aerosol concentration between a bin scheme and a bulk scheme in a deep-convective cloud system. Advances in Meteorology, 2019, 9292535, https://doi.org/10.1155/2019/9292535.
Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587−1612, https://doi.org/10.1175/2009MWR2968.1.
Lin, J. C., T. Matsui, R. A. Pielke, and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res.: Atmos., 111, D19204, https://doi.org/10.1029/2005JD006884.
Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. Climatol., 31, 708−721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.
Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmospheric Chemistry and Physics, 11, 10503−10523, https://doi.org/10.5194/acp-11-10503-2011.
Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.
Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7, 1961−1971, https://doi.org/10.5194/acp-7-1961-2007.
Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128, 951−971, https://doi.org/10.1256/0035900021643601.
Qian, Y., D. Y. Gong, J. W. Fan, L. R. Leung, R. Bennartz, D. L. Chen, and W. G. Wang, 2009: Heavy pollution suppresses light rain in china: Observations and modeling. J. Geophys. Res.: Atmos., 114, D00K02, https://doi.org/10.1029/2008JD011575.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071−1107, https://doi.org/10.1002/qj.49712454804.
Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105−3108, https://doi.org/10.1029/1999GL006066.
Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmospheric Chemistry and Physics, 7(13), 3411−3424, https://doi.org/10.5194/acp-7-3411-2007.
Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309−1313, https://doi.org/10.1126/science.1160606.
Rutledge, S. A., and P. V. Hobbs, 1984: The Mesoscale and Microscale structure and organization of clouds and precipitation in Midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal Rainbands. J. Atmos. Sci., 41, 2949−2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note-475+STR, 113 pp.
Tao, W. K., X. W. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud- resolving model simulations. J. Geophys. Res.: Atmos., 112(D24), D24S18, https://doi.org/10.1029/2007JD008728.
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71(10), 3636−3658, https://doi.org/10.1175/JAS-D-13-0305.1.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Wang, C. E., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, https://doi.org/10.1029/2004JD005720.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504−520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.
Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479−2498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.
Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331−358, ttps://doi.org/10.1007/978-1-935704-20-1_15.
Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57(9), 1452−1472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135−159, https://doi.org/10.1016/0004-6981(78)90196-8.
Xie, X. N., and X. D. Liu, 2015: Aerosol-cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization. J. Meteor. Res., 29(1), 72−81, https://doi.org/10.1007/s13351-014-4065-8.
Zhang, X., J. W. Bao, B. D. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 2023−2045, https://doi.org/10.1175/MWR-D-17-0356.1.