Armstrong, B., and Coauthors, 2019: The role of humidity in associations of high temperature with mortality: A multicountry, multicity study. Environmental Health Perspectives, 127(9), 097007, https://doi.org/10.1289/EHP5430.
Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nature Clim. Change, 6, 869−874, https://doi.org/10.1038/nclimate3029.
Brugnara, Y., M. P. McCarthy, K. M. Willett, and N. A. Rayner, 2023: Homogenization of daily temperature and humidity series in the UK. International Journal of Climatology, 43(4), 1693−1709, https://doi.org/10.1002/joc.7941.
Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol., 20, 1527−1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.
Chadwick, R., P. Good, and K. Willett, 2016: A Simple Moisture Advection Model of Specific Humidity Change over Land in Response to SST Warming. J. Climate, 29, 7613−7632, https://doi.org/10.1175/JCLI-D-16-0241.1.
Climpact, 2022: Climpact open source R software for calculating sector-specific extremes indices. Available from https://climpact-sci.org/.
Dunn, R. J. H., 2019: HadISD version 3: Monthly updates, Hadley Centre Technical Note 103, 10 pp. Available from https://www.metoffice.gov.uk/research/library-and-archive/publications/science/climate-science-technical-notes.
Dunn, R. J. H., 2021a: Adapting the QC to account for the June 2021 North American Heatwave (part 3). Available from https://hadisd.blogspot.com/2021/09/adapting-qc-to-account-for-june-2021_20.html.
Dunn, R. J. H., 2021b: Adapting the QC to account for the June 2021 North American Heatwave (part 2). [Available online from https://hadisd.blogspot.com/2021/09/adapting-qc-to-account-for-june-2021.html]
Dunn, R. J. H., 2021c: Adapting the QC to account for the June 2021 North American Heatwave (part 1). Available from https://hadisd.blogspot.com/2021/07/adapting-qc-to-account-for-june-2021.html.
Dunn, R. J. H., 2021d: The June 2021 North American Heatwave and v3. 1. 2. 202106p. Available from https://hadisd.blogspot.com/2021/07/the-june-2021-north-american-heatwave.html.
Dunn, R. J. H., and C. P. Morice, 2022: On the effect of reference periods on trends in percentile-based extreme temperature indices. Environmental Research Letters, 17(3), 034026, https://doi.org/10.1088/1748-9326/ac52c8.
Dunn, R. J. H., K. M. Willett, D. E. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geoscientific Instrumentation, Methods and Data Systems, 5, 473−491, https://doi.org/10.5194/gi-5-473-2016.
Dunn, R. J. H., and Coauthors, 2020: Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res.: Atmos., 125, e2019JD032263, https://doi.org/10.1029/2019JD032263.
ET-SCI, 2022: Expert Team for Sector-Specific Indices webpage. Available from https://public.wmo.int/en/events/meetings/expert-team-sector-specific-climate-indices-et-sci.
Freychet, N., S. F. B. Tett, Z. Yan, and Z. Li, 2020: Underestimated change of wet-bulb temperatures over East and South China. Geophys. Res. Lett., 47, e2019GL086140, https://doi.org/10.1029/2019GL086140.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Ingleby, B., D. Moore, C. Sloan, and R. Dunn, 2013: Evolution and accuracy of surface humidity reports. J. Atmos. Oceanic Technol., 30(9), 2025−2043, https://doi.org/10.1175/JTECH-D-12-00232.1.
Jensen, M. E., R. D. Burman, and R. G. Allen (ed). 1990: Evapotranspiration and Irrigation Water Requirements. ASCE Man. and Rep. on Engineering Pract. No. 70, New York, 332 p.
Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 5, p. 455-465 11 p.
Li, Z., Z. W. Yan, Y. N. Zhu, N. Freychet, and S. Tett, 2020: Homogenized daily relative humidity series in China during 1960−2017. Adv. Atmos. Sci., 37(4), 318−327, https://doi.org/10.1007/s00376-020-9180-0.
Mears, C. A., J. P. Nicolas, O. Bock, S. P. Ho, and X. Zhou, 2022: [Global Climate] Total Column Water Vapour [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103(8), S52−S54.
Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22(7), 1700−1717, https://doi.org/10.1175/2008JCLI2263.1.
Raymond, C., T. Matthews, and R. M. Horton, 2020: The emergence of heat and humidity too severe for human tolerance. Science Advances, 6(19), eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.
Santer, B. D., and Coauthors, 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. International Journal of Climatology, 28, 1703−1722, https://doi.org/10.1002/joc.1756.
Schär, C., 2016: Climate extremes: The worst heat waves to come. Nature Climate Change, 6, 128−129, https://doi.org/10.1038/nclimate2864.
Shen, D. D., and N. Zhu, 2015: Influence of the temperature and relative humidity on human heat acclimatization during training in extremely hot environments. Building and Environment, 94, 1−11, https://doi.org/10.1016/j.buildenv.2015.07.023.
Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences of the United States of America, 107, 9552−9555, https://doi.org/10.1073/pnas.0913352107.
Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res.: Atmos., 115, D01110, https://doi.org/10.1029/2009JD012442.
Simmons, A. J., and Coauthors, 2021: Low frequency variability and trends in surface air temperature and humidity from ERA5 and other datasets. European Centre for Medium-range Weather Forecasting (ECMWF) Technical Memoranda 881, ECMWF, Shinfield Park, Reading, UK, 97 pp, https://doi.org/10.21957/ly5vbtbfd.
Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704−708, https://doi.org/10.1175/2011BAMS3015.1.
Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol., 50(11), 2267−2269, https://doi.org/10.1175/JAMC-D-11-0143.1.
Vecellio, D. J., S. T. Wolf, R. M. Cottle, and W. L. Kenney, 2022: Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project). Journal of Applied Physiology, 132(2), 340−345, https://doi.org/10.1152/japplphysiol.00738.2021.
Wang, P. Y., L. R. Leung, J. Lu, F. F. Song, and J. P. Tang, 2019: Extreme wet-bulb temperatures in China: The significant role of moisture. J. Geophys. Res.: Atmos., 124, 11 944−11 960, https://doi.org/10.1029/2019JD031477.
Weber, K. M. F., 2022: Why is the atmosphere over land becoming drier? Exploring the roles of atmospheric and land-surface processes on relative humidity. PhD dissertation, University of Sheffield.
Willett, K. M., 2023a: HadISDH.extremes: Gridded global monthly land surface wet bulb and dry bulb temperature extremes index data version 1.0.0.2022f. NERC EDS Centre for Environmental Data Analysis, https:// doi.org/10.5285/2d1613955e1b4cd1b156e5f3edbd7e66.
Willett, K. M., 2023b: HadISDH.extremes Part II: Exploring humid heat extremes using wet bulb temperature indices. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-023-2348-7.
Willett, K. M., D. A. Lavers, M. Bosilovich, and A. J. Simmons, 2022: [Global Climate] Surface Humidity [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103(8), S50−S52.
Willett, K. M., C. N. Williams Jr., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, P. D. Jones, and D. E. Parker, 2013: HadISDH: An updateable land surface specific humidity product for climate monitoring. Climate of the Past, 9, 657−677, https://doi.org/10.5194/cp-9-657-2013.
Willett, K. M., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr., 2014: HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 10, 1983−2006, https://doi.org/10.5194/cp-10-1983-2014.
Willett, K. M., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr., 2023: HadISDH.land: Gridded global monthly land surface humidity data version 4. 5. 1.2022f. NERC EDS Centre for Environmental Data Analysis, https://doi.org/10.5285/8956cf9e31334914ab4991796f0f645a.
Yu, S., S. F. B. Tett, N. Freychet, and Z. W. Yan, 2021: Changes in regional wet heatwave in Eurasia during summer (1979−2017). Environmental Research Letters, 16, 064094, https://doi.org/10.1088/1748-9326/ac0745.
Zhang, X. B., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18(11), 1641−1651, https://doi.org/10.1175/JCLI3366.1.