Abraham, J., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450−483, https://doi.org/10.1002/rog.20022.
Abraham, J., L. J. Cheng, M. E. Mann, K. Trenberth, and K. Von Schuckmann, 2022: The ocean response to climate change guides both adaptation and mitigation efforts. Atmos. Ocean. Sci. Lett., 15, 100221, https://doi.org/10.1016/j.aosl.2022.100221.
Abraham, J. P., and L. J. Cheng, 2022: Intersection of climate change, energy, and adaptation. Energies, 15, 5886, https://doi.org/10.3390/en15165886.
Argo, 2023: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from https://doi.org/10.17882/42182.
Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. Von Schuckmann et al., Eds., 48−52, https://doi.org/10.1080/1755876X.2021.1946240.
Boyer, T., and Coauthors, 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 4817−4842, https://doi.org/10.1175/JCLI-D-15-0801.1.
Boyer, T. P., and Coauthors, 2018: World ocean database 2018. NOAA Atlas NESDIS 87.
Cheng, L. J., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31 (8), 1793−1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. Von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14−16, https://doi.org/10.1029/2017EO 081839.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 3529−3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Cheng, L. J., and Coauthors, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Climate, 33 , 10 357−10 381, https://doi.org/10.1175/JCLI-D-20-0366.1.
Cheng, L. J., and Coauthors, 2022a: Past and future ocean warming. Nature Reviews Earth & Environment, 3, 776−794, https://doi.org/10.1038/s43017-022-00345-1.
Cheng, L. J., G. Foster, Z. Hausfather, K. E. Trenberth, and J. Abraham, 2022b: Improved quantification of the rate of ocean warming. J. Climate, 35, 4827−4840, https://doi.org/10.1175/JCLI-D-21-0895.1.
Cheng, L. J, and Coauthors, 2022c: Another record: Ocean warming continues through 2021 despite La Niña conditions. Adv. Atmos. Sci., 39 (3), 373−385, https://doi.org/10.1007/s00376-022-1461-3.
Cheng, L. J., and Coauthors, 2023: Another year of record heat for the oceans. Adv. Atmos. Sci, 40, 963−974, https://doi.org/10.1007/s00376-023-2385-2.
Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 4342−4362, https://doi.org/10.1175/2010JCLI3377.1.
Escudier, R., and Coauthors, 2021: A high resolution reanalysis for the mediterranean sea. Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nature Climate Change, 11, 689−695, https://doi.org/10.1038/s41558-021-01092-9.
Fasullo, J. T., Gent, P. R., and Nerem, R. S. 2020: Forced patterns of sea level rise in the community earth system model large ensemble from 1920 to 2100. Journal of Geophysical Research: Oceans, 125, e2019JC016030. https://doi.org/10.1029/2019JC016030
Gouretski, V., and L. J. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Oceanic Technol., 37 (5), 841−855, https://doi.org/10.1175/JTECH-D-19-0205.1.
Gouretski, V., L. J. Cheng, and T. Boyer, 2022: On the consistency of the bottle and CTD profile data. J. Atmos. Oceanic Technol., 39 (12), 1869−1887, https://doi.org/10.1175/JTECH-D-22-0004.1.
Gouretski, V., F. Roquet, and L. J. Cheng, 2023: Measurement biases in ocean temperature profiles from marine mammal data loggers. J. Atmos. Oceanic Technol., submitted.
Gulev, S., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72−S77.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955−2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0−2000 m), 1955−2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116−1123, https://doi.org/10.1038/s41558-020-00918-2.
Li, K. X., F. Zheng, L. J. Cheng, T. Y. Zhang, and J. Zhu, 2023: Record-breaking global temperature and crises with strong El Niño in 2023−2024. The Innovation Geoscience, 1 (2), 100030. https://doi.org/10.59717/j.xinn-geo.2023.100030.
Li, K. X., F. Zheng, J. Zhu, and Q.-C. Zeng, 2024: El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-023-3371-4.
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper-Indian Ocean thermal variability. J. Climate, 33, 7233−7253, https://doi.org/10.1175/JCLI-D-19-0851.1.
Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48, e2021GL093047, https://doi.org/10.1029/2021GL09 3047.
Loeb, N. G., and Coauthors, 2022: Evaluating twenty-year trends in Earth's energy flows from observations and reanalyses. J. Geophys. Res. Atmos., 127, e2022JD036686, https://doi.org/10.1029/2022JD036686.
Nigam, T., and Coauthors, 2021: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I.
Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318−332, https://doi.org/10.1016/j.pocean.2013.11.003.
Purkey, S., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336−6351, https://doi.org/10.1175/2010JCLI3682.1.
Ren, Q. P., Y.-O. Kwon, J. Y. Yang, R.-X. Huang, Y. L. Li, and F. Wang, 2022: Increasing inhomogeneity of the global oceans. Geophys. Res. Lett., 49, e2021GL097598, https://doi.org/10.1029/2021GL097598.
Reseghetti, F., C. Fratianni, and S. Simoncelli, 2023: Reprocessed of XBT dataset in the Ligurian and Tyrrhenian seas (1999−2019). Istituto Nazionale di Geofisica e Vulcanologia (INGV). [Available online from https://doi.org/10.13127/rep_xbt_1999_2019].
Rhein, M., and Coauthors, 2013: Observations: Ocean pages. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020 GL090548.
Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.
Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472−3488, https://doi.org/10.1002/lno.11892.
Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. In: Copernicus Marine Service Ocean State Report, Issue 2, Journal of Operational Oceanography, 11:sup1, s13–s16, https://doi.org/10.1080/1755876X.2018.1489208.
Simoncelli, S., Reseghetti, F., Fratianni, C., Cheng, L., and Raiteri, G., 2023: Reprocessing of XBT profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with full metadata upgrade, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-525, in review.
Tan, Z. T., L. J. Cheng, V. Gouretski, B. Zhang, Y. J. Wang, F. C. Li, Z. H. Liu, and J. Zhu, 2023: A new automatic quality control system for ocean profile observations and impact on ocean warming estimate. Deep-Sea Res. Part I Oceanogr. Res. Pap., 194, 103961, https://doi.org/10.1016/j.dsr.2022.103961.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth's energy imbalance. J. Climate, 27, 3129−3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, AAC 5-1-AAC 5-17, doi: 10.1029/2000JD000298.
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth's Future, 6, 730−744, https://doi.org/10.1029/2018EF000825.
Trenberth, K. E., and Y. X. Zhang, 2019: Observed interhemispheric meridional heat transports and the role of the Indonesian Throughflow in the Pacific Ocean. J. Climate, 32, 8523−8536, https://doi.org/10.1175/JCLI-D-19-0465.1.
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.
Von Schuckmann, K., and Coauthors, 2016: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 9, s235−s320, https://doi.org/10.1080/1755876X.2016.1273446.
Von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013−2041, https://doi.org/10.5194/essd-12-2013-2020.
Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47, 3901−3915, https://doi.org/10.1007/s00382-016-3048-0.