Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30(12), 1657, https://doi.org/10.1029/2003GL016875.
Andrews, T., and P. M. Forster, 2010: The transient response of global-mean precipitation to increasing carbon dioxide levels. Environmental Research Letters, 5(2), 025212, https://doi.org/10.1088/1748-9326/5/2/025212.
Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423−434, https://doi.org/10.1007/s00382-009-0583-y.
Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. Journal of Advances in Modeling Earth Systems, 6(1), 91−114, https://doi.org/10.1002/2013MS000250.
Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J.-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106(D7), 7313−7336, https://doi.org/10.1029/2000JD900507.
Collins, W. D., and Coauthors, 2004: Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp, http://dx.doi.org/10.5065/D63N21CH.
Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Climate, 19(11), 2144−2161, https://doi.org/10.1175/JCLI3760.1.
Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20(7), 865−873, https://doi.org/10.1007/s00382-003-0310-z.
Dai, A. G., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model. J. Climate, 14(4), 485−519, https://doi.org/10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO;2.
Duan, L., L. Cao, G. Bala, and K. Caldeira, 2018: Comparison of the fast and slow climate response to three radiation management geoengineering schemes. J. Geophys. Res., 123, 11 980−12 001,
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Ganguly, D., P. J. Rasch, H. L. Wang, and J. H. Yoon, 2012: Fast and slow responses of the south Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett., 39(18), L18804, https://doi.org/10.1029/2012GL053043.
Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.
Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Volume 29, J. E. Hansen and T. Takahashi, Eds., Geophysical Monograph Series, 130−163,
Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.
Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21(19), 5145−5153, https://doi.org/10.1175/2008JCLI2292.1.
Imre, D. G., E. H. Abramson, and P. H. Daum, 1996: Quantifying cloud-induced shortwave absorption: An examination of uncertainties and of recent arguments for large excess absorption. J. Appl. Meteorol. Climatol., 35, 1991−2010, https://doi.org/10.1175/1520-0450(1996)035<1991:QCISAA>2.0.CO;2.
Jing, X. W., 2012: Research and application of a new cloud-radiative scheme in climate models. PhD dissertation, Chinese Academy of Meteorological Sciences, 102 pp. (in Chinese with English abstract)
Jing, X. W., and H. Zhang, 2012: Application and evaluation of McICA cloud-radiation framework in the AGCM of the national climate center. Chinese Journal of Atmospheric Sciences, 36(5), 945−958, https://doi.org/10.3878/j.issn.1006-9895.2012.11155. (in Chinese with English abstract
Kiehl, J. T., T. L. Schneider, R. W. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res., 104(D24), 31 239−31 254,
Li, J. D., Q. L. You, and B. He, 2020: Distinctive spring shortwave cloud radiative effect and its inter-annual variation over southeastern China. Atmospheric Science Letters, 21(6), e970, https://doi.org/10.1002/asl.970.
Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford University Press, 172−248.
Liu, Y. H., J. R. Key, and X. J. Wang, 2008: The influence of changes in cloud cover on recent surface temperature trends in the Arctic. J. Climate, 21(4), 705−715, https://doi.org/10.1175/2007JCLI1681.1.
Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10(3), 409−440, https://doi.org/10.1175/1520-0442(1997)010<0409:TTALCC>2.0.CO;2.
Norris, J. R., 2005: Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110, D08206, https://doi.org/10.1029/2004JD005600.
Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536(7614), 72−75, https://doi.org/10.1038/nature18273.
Ogura, T., M. J. Webb, A. Bodas-Salcedo, K. D. Williams, T. Yokohata, and D. R. Wilson, 2008: Comparison of cloud response to CO2 doubling in two GCMs. Sola, 4, 29−32, https://doi.org/10.2151/sola.2008-008.
Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 186 pp, http://dx.doi.org/10.5065/D6N877R0.
Pincus, R., H. W. Barker, and J. J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108(D13), 4376, https://doi.org/10.1029/2002JD003322.
Potter, G. L., and R. D. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109, D02106, https://doi.org/10.1029/2003JD004018.
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243(4887), 57−63, https://doi.org/10.1126/science.243.4887.57.
Randall, D. A., J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65(12), 1290−1301, https://doi.org/10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.
Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, 589−662.
Samset, B. H., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43(6), 2782−2791, https://doi.org/10.1002/2016GL068064.
Schneider, T., C. M. Kaul, and K. G. Pressel, 2019: Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nature Geoscience, 12, 163−167, https://doi.org/10.1038/s41561-019-0310-1.
Shi, G. Y., 2007: Atmospheric Radiation. Science Press, Beijing, China, 302−318. (in Chinese)
Sun, B. M., M. Free, H. L. Yoo, M. J. Foster, A. Heidinger, and K.-G. Karlsson, 2015: Variability and trends in U.S. cloud cover: ISCCP, PATMOS-x, and CLARA-A1 compared to homogeneity-adjusted weather observations. J. Climate, 28(11), 4373−4389, https://doi.org/10.1175/JCLI-D-14-00805.1.
Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17(3), 603−615, https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2.
Wang, Q. Y., H. Zhang, S. Yang, Q. Chen, X. X. Zhou, G. Y. Shi, Y. M. Cheng, and M. Wild, 2021: Potential driving factors on surface solar radiation trends over China in recent years. Remote Sensing, 13(4), 704, https://doi.org/10.3390/rs13040704.
Wang, X. C., Y. M. Liu, Q. Bao, and Z. Z. Wang, 2012: Climate sensitivity and cloud feedback processes imposed by two different external forcings in an aquaplanet GCM. Theor. Appl. Climatol., 110, 1−10, https://doi.org/10.1007/s00704-012-0607-0.
Wang, Z. L., H. Zhang, J. N. Li, X. W. Jing, and P. Lu, 2013: Radiative forcing and climate response due to the presence of black carbon in cloud droplets. J. Geophys. Res., 118, 3662−3675, https://doi.org/10.1002/jgrd.50312.
Wang, Z. L., L. Lin, M. L. Yang, Y. Y. Xu, and J. N. Li, 2017: Disentangling fast and slow responses of the east Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmospheric Chemistry and Physics, 17(18), 11 075−11 088,
Wetherald, R. T., 2011: The role of low clouds in determining climate sensitivity in response to a doubling of CO2 as obtained from 16 mixed-layer models. Climatic Change, 109(3-4), 569−582, https://doi.org/10.1007/s10584-011-0047-3.
Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to planet earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76(11), 2125−2154, https://doi.org/10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2.
Wu, T. W., R. C. Yu, and F. Zhang, 2008: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci., 65(7), 2235−2253, https://doi.org/10.1175/2007JAS2514.1.
Wu, T. W., and Coauthors, 2010: The Beijing climate center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34(1), 123−147, https://doi.org/10.1007/s00382-008-0487-2.
Wyant, M. C., C. S. Bretherton, P. N. Blossey, and M. Khairoutdinov, 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. Journal of Advances in Modeling Earth Systems, 4, M05001, https://doi.org/10.1029/2011MS000092.
Wylie, D., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18(15), 3021−3031, https://doi.org/10.1175/JCLI3461.1.
Zhang, H., 2016: Atmospheric Radiative Transfer Model of BCC_RAD. China Meteorological Press, Beijing, China, 205 pp. (in Chinese)
Zhang, H., and X. W. Jing, 2016: Advances in studies of cloud overlap and its radiative transfer issues in the climate models. Acta Meteorologica Sinica, 74(1), 103−113, https://doi.org/10.11676/qxxb2016.009. (in Chinese with English abstract
Zhang, H., T. Nakajima, G. Y. Shi, T. Suzuki, and R. Imasu, 2003: An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res., 108(D20), 4641, https://doi.org/10.1029/2002JD003358.
Zhang, H., G. Y. Shi, T. Nakajima, and T. Suzuki, 2006a: The effects of the choice of the k-interval number on radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 98(1), 31−43, https://doi.org/10.1016/j.jqsrt.2005.05.090.
Zhang, H., T. Suzuki, T. Nakajima, G. Y. Shi, X. Y. Zhang, and Y. Liu, 2006b: Effects of band division on radiative calculations. Optical Engineering, 45(1), 016002, https://doi.org/10.1117/1.2160521.
Zhang, H., J. Peng, X. W. Jing, and J. N. Li, 2013: The features of cloud overlapping in eastern Asia and their effect on cloud radiative forcing. Science China Earth Sciences, 56(5), 737−747, https://doi.org/10.1007/s11430-012-4489-x.
Zhang, H., X. Jing, and J. Li, 2014: Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1,. Geoscientific Model Development, 7(3), 737−754, https://doi.org/10.5194/gmd-7-737-2014.
Zhang, H., and Coauthors, 2017: Study on the influence of clouds on the earth radiation budget and precipitation changes in East Asia region. China Basic Science, 19, 18−22, 28,
Zhang, H., B. Xie, and Z. Wang, 2018: Effective radiative forcing and climate response to short-lived climate pollutants under different scenarios. Earth's Future, 6, 857−866, https://doi.org/10.1029/2018EF000832.
Zhang, H., X. W. Jing, and J. Peng, 2019: Cloud Radiation and Climate. China Meteorological Press, Beijing, China, 270 pp. (in Chinese)
Zhang, H., F. Wang, S. Y. Zhao, and B. Xie, 2021: Earth’s energy budget, climate feedbacks, and climate sensitivity. Climate Change Research, 17(6), 691−698, http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2021.191. (in Chinese with English abstract)
Zhang, H., and Coauthors, 2022: Advances in cloud radiative feedbacks in global climate change. Scientia Sinica Terrae, 52, 400−417, https://doi.org/10.1360/SSTe-2021-0052. (in Chinese)
Zhou, X. X., H. Zhang, and X. W. Jing, 2016: Distribution and variation trends of cloud amount and optical thickness over China. Journal of Atmospheric and Environmental Optics, 11(1), 1−13, http://gk.hfcas.ac.cn/CN/Y2016/V11/I1/1. (in Chinese with English abstract)