Brierley, C. M., and Coauthors, 2020: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Climate of the Past, 16, 1847−1972, https://doi.org/10.5194/cp-16-1847-2020.
Brovkin, V., L. Boysen, T. Raddatz, V. Gayler, A. Loew, and M. Claussen, 2013: Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. Journal of Advances in Modeling Earth Systems, 5, 48−57, https://doi.org/10.1029/2012MS000169.
Brown, J., R. and Coauthors, 2020: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 16, 1777−1805, https://doi.org/10.5194/cp-16-1777-2020.
Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68, 149−163, https://doi.org/10.1016/j.gloplacha.2009.04.001.
Cao, J., and H. K. Zhao, 2020: Distinct response of Northern Hemisphere land monsoon precipitation to transient and stabilized warming scenarios. Advances in Climate Change Research, 11, 161−171, https://doi.org/10.1016/j.accre.2020.09.007.
Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geoscientific Model Development, 11, 2975−2993, https://doi.org/10.5194/gmd-11-2975-2018.
Cao, J., B. Wang, and J. Liu, 2019a: Attribution of the last glacial maximum climate formation. Climate Dyn., 53, 1661−1679, https://doi.org/10.1007/s00382-019-04711-6.
Cao, J., B. Wang, and L. B. Ma, 2019b: Attribution of global monsoon response to the last glacial maximum forcings. J. Climate, 32, 6589−6605, https://doi.org/10.1175/JCLI-D-18-0871.1.
Cao, J., B. Wang, B. Q. Xiang, J. Li, T. J. Wu, X. H. Fu, L. G. Wu, and J. Z. Min, 2015: Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32, 585−600, https://doi.org/10.1007/s00376-014-4200-6.
Cao, J., B. Wang, B. Wang, H. Zhao, C. Wang, Y. Han, 2020: Sources of the Intermodel Spread in Projected Global Monsoon Hydrological Sensitivity. Geophysical Research Letters, 47, e2020GL089560, https://doi.org/10.1029/2020GL089560.
Capron, E., A. Govin, R. Feng, B. L. Otto-Bliesner, and E. W. Wolff, 2017: Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions. Quaternary Science Reviews, 168, 137−150, https://doi.org/10.1016/j.quascirev.2017.04.019.
Chen. L., T. Li, and Y. Q. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250−3274, https://doi.org/10.1175/JCLI-D-14-00439.1.
Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 2688−2701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.
Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Carré, M., and Coauthors, 2014: Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science, 345, 1045−1048, https://doi.org/10.1126/science.1252220.
Cui, J. X., and T. Li, 2019: Changes of MJO propagation characteristics under global warming. Climate Dyn., 53, 5311−5327, https://doi.org/10.1007/s00382-019-04864-4.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fischer, H., and Coauthors, 2018: Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nature Geoscience, 11, 474−485, https://doi.org/10.1038/s41561-018-0146-0.
Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 817-821.
Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92−114, https://doi.org/10.1007/s00376-014-0009-6.
Giorgetta, M. A., and Coauthors, 2013: The atmospheric general circulation model ECHAM6: Model description. Technical Report 135, Max Planck Institute for Meteorology, Hamburg, Germany.
Gregory, J. M., and coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.
Held, I. M., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/JCLI3990.1.
Hoffman, J. S., P. U. Clark, A. C. Parnell, and F. He, 2017: Regional and global sea-surface temperatures during the last interglaciation. Science, 355, 276−279, https://doi.org/10.1126/science.aai8464.
Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.
Hunke, E. C., W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1. LA-CC-06-012, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., IPCC Fifth Assessment Report. Cambridge, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324.
Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys Res. Lett., 43, 9113−9120, https://doi.org/10.1002/2016GL070067.
Joussaume, S., and K. Taylor, 1995: Status of the Paleoclimate Modeling Intercomparison Project. Proc First International AMIP Scientific Conference, Geneva, World Meteorology Organization, Monterey, USA, 425-430.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631−1644, https://doi.org/10.1175/BAMS-83-11-1631.
Lee, J. Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101−119, https://doi.org/10.1007/s00382-012-1564-0.
Li, G., S. P. Harrison, P. J. Bartlein, K. Izumi, and I. C. Prentice, 2013: Precipitation scaling with temperature in warm and cold climates: An analysis of CMIP5 simulations. Geophys. Res. Lett., 40, 4018−4024, https://doi.org/10.1002/grl.50730.
Ma, L., B. Wang, and J. Cao, 2020: Impacts of atmosphere-sea ice-ocean interaction on Southern Ocean deep convection in a climate system model. Climate Dyn., 54, 4075−4093, https://doi.org/10.1007/s00382-020-05218-1.
Madec, G., and the NEMO team, 2012: NEMO ocean engine. Note du pole de modélisation de l'Institut Pierre-Simon Laplace. No 27, Institut Pierre-Simon Laplace (IPSL), France.
Marcott, S. A., J. D. Shakun, P. U. Clark, and A. C. Mix, 2013: A reconstruction of regional and global temperature for the past 11, 300 years. Science, 399, 1198−1201, https://doi.org/10.1126/science.1228026.
Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. The Cryosphere, 6, 1383−1394, https://doi.org/10.5194/tc-6-1383-2012.
McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 1740−1745, https://doi.org/10.1126/science.1132588.
Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.-F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.
Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313−318, https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos., 117, D08101, https://doi.org/10.1029/2011JD017187.
O’Neill, B. C. and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Otto-Bliesner, B. L., and Coauthors, 2017: The PMIP4 contribution to CMIP6-Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 10, 3979−4003, https://doi.org/10.5194/gmd-10-3979-2017.
Otto-Bliesner, B. L., and Coauthors, 2020: Large-scale features of last interglacial climate: Results from evaluating the lig127k simulations for CMIP6-PMIP4. Climate of the Past, https://doi.org/10.5194/cp-2019-174. (in press)
Overland, J. E., and M. Y. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophys Res. Lett., 40, 2097−2101, https://doi.org/10.1002/grl.50316.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670.
Rushley, S., D. Kim, and Á. F. Adames, 2019: Changes in the MJO under greenhouse gas-induced warming in CMIP5 models. J. Climate, 32, 803−821, https://doi.org/10.1175/JCLI-D-18-0437.1.
Scussolini, P., and Coauthors, 2019: Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial. Science Advances, 5, eaax7047, https://doi.org/10.1126/sciadv.aax7047.
Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Science, 34, 1149−1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.
Valcke, S. T. Craig, and L. Coquart, 2015: OASIS3-MCT User Guide, OASIS3-MCT 3.0. CERFACS Technical Report, CERFACS TR/CMGC/15/38, Toulouse, France. Available from http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf, 2015.
Vihma, T., 2014: Effects of Arctic Sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175−1214, https://doi.org/10.1007/s10712-014-9284-0.
Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the madden-Julian oscillation. Bull. Amer. Meteor. Soc., 84, 33−50, https://doi.org/10.1175/BAMS-84-1-33.
Wang, B., C. H. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 6471−6489, https://doi.org/10.1175/JCLI-D-19-0993.1.
Wang, B., and coauthors, 2018: Toward predicting changes in the land monsoon rainfall a decade in advance. J. Climate, 31, 2699−2714, https://doi.org/10.1175/JCLI-D-17-0521.1.
Yin, Q. Z., and A. Berger, 2015: Interglacial analogues of the Holocene and its natural near future. Quaternary Science Reviews, 120, 28−46, https://doi.org/10.1016/j.quascirev.2015.04.008.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po‐Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhao, H. K., R. Yoshida, and G. B. Raga, 2015a: Impact of the madden-Julian oscillation on western north pacific tropical cyclogenesis associated with large-scale patterns. Journal of Applied Meteorology Climatology, 54, 1413−1429, https://doi.org/10.1175/JAMC-D-14-0254.1.
Zhao, H. K., X. N. Jiang, and L. G. Wu, 2015b: Modulation of northwest pacific tropical cyclone genesis by the intraseasonal variability. Journal of the Meteorological Society of Japan. Ser. II, 93, 81−97, https://doi.org/10.2151/jmsj.2015-006.
Zhao H. K., S. H. Chen, P. J. Klotzbach, and G. B. Raga, 2018: Impact of the extended boreal summer intraseasonal oscillation on western north pacific tropical cloud cluster genesis productivity. J. Climate, 31, 9175−9191, https://doi.org/10.1175/JCLI-D-18-0113.1.