Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47−55, https://doi.org/10.1038/nature14956.
Biswas, M. K., and Coauthors, 2018: GFDL Vortex Tracker Users’ Guide V3.9a, 35 pp.
Bloemendaal, N., S. Muis, R. J. Haarsma, M. Verlaan, M. Irazoqui Apecechea, H. De Moel, P. J. Ward, and J. C. J. H. Aerts, 2019: Global modeling of tropical cyclone storm surges using high-resolution forecasts. Climate Dyn., 52, 5031−5044, https://doi.org/10.1007/s00382-018-4430-x.
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046−1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.
Bott, A., 2008: Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres. Atmospheric Research, 89, 262−269, https://doi.org/10.1016/j.atmosres.2008.02.010.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422−3448,
Byun, D. W., 1999: Dynamically consistent formulations in meteorological and air quality models for multiscale atmospheric studies. Part I: Governing equations in a generalized coordinate system. J. Atmos. Sci., 56, 3789−3807, https://doi.org/10.1175/1520-0469(1999)056<3789:DCFIMA>2.0.CO;2.
Cangialosi, J. P., E. Blake, M. Demaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the national hurricane center. Wea. Forecasting, 35, 1913−1922, https://doi.org/10.1175/WAF-D-20-0059.1.
Dudhia, J., 2014: A history of mesoscale model development. Asia-Pacific Journal of Atmospheric Sciences, 50, 121−131, https://doi.org/10.1007/s13143-014-0031-8.
Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139−1152, https://doi.org/10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843−858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.
Forbes, R., and A. Tompkins, 2011: An improved representation of cloud and precipitation. ECMWF Newsletter, No. 129, 6 pp,
Forbes, R., A. M. Tompkins, and A. Untch, 2011: A new prognostic bulk microphysics scheme for the IFS. ECMWF Technical Memoranda, No. 649, 28 pp.
Gu, H. D., and Z. A. Qian, 1991: A discussion about the role of the water vapor source/sink term in continuity equation of numerical models. Chin. Sci. Bull., 36, 1291−1296, https://doi.org/10.1360/csb1991-36-17-1291.
Hendricks, E. A., S. A. Braun, J. L. Vigh, and J. B. Courtney, 2019: A summary of research advances on tropical cyclone intensity change from 2014−2018. Tropical Cyclone Research and Review, 8(4), 219−225, https://doi.org/10.1016/j.tcrr.2020.01.002.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Lackmann, G. M., and R. M. Yablonsky, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61, 1674−1692, https://doi.org/10.1175/1520-0469(2004)061<1674:TIOTPM>2.0.CO;2.
Lauritzen, P. H., and Coauthors, 2018: NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. Journal of Advances in Modeling Earth Systems, 10, 1537−1570, https://doi.org/10.1029/2017MS001257.
Li, Q. Q., and Y. Q. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140(9), 2782−2805, https://doi.org/10.1175/MWR-D-11-00237.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014: Effects of Diabatic heating and cooling in the rapid Filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71(9), 3144−3163, https://doi.org/10.1175/JAS-D-13-0312.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity—A revisit. J. Atmos. Sci., 72, 1323−1345, https://doi.org/10.1175/JAS-D-14-0224.1.
Lorenz, E. N., 1960: Maximum simplification of the dynamic equations. Tellus, 12, 243−254, https://doi.org/10.1111/j.2153-3490.1960.tb01307.x.
Lu, X. Q., H. Yu, M. Ying, B. K. Zhao, S. Zhang, L. M. Lin, L. N. Bai, and R. J. Wan, 2021: Western North Pacific tropical cyclone database created by the China meteorological administration. Adv. Atmos. Sci., 38, 690−699, https://doi.org/10.1007/s00376-020-0211-7.
Ma, Z. H., J. F. Fei, L. Liu, X. G. Huang, and X. P. Cheng, 2013: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized Air–Sea interaction conditions. Mon. Wea. Rev., 141, 1285−1303, https://doi.org/10.1175/MWR-D-12-00123.1.
Ma, Z. H., J. F. Fei, X. G. Huang, and X. P. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120−140, https://doi.org/10.1175/JAS-D-14-0199.1.
Malardel, S., M. A. Diamantakis, A. Panareda, and J. Flemming, 2019: Dry mass versus total mass conservation in the IFS. ECMWF Technical Memorandum, No. 849, 19 pp,
Marchok, T., 2021: Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteorol. Climatol., 60(9), 1265−1284, https://doi.org/10.1175/JAMC-D-20-0175.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663−16 682,
Neale, R. B., and Coauthors, 2012: Description of the NCAR community atmosphere model (CAM 5.0). NCAR Technical Note NCAR/TN-486+STR, 274 pp,
Peng, J., J. P. Wu, W. M. Zhang, J. Zhao, L. F. Zhang, and J. H. Yang, 2019: A modified nonhydrostatic moist global spectral dynamical core using a dry-mass vertical coordinate. Quart. J. Roy. Meteor. Soc., 145, 2477−2490, https://doi.org/10.1002/qj.3574.
Peng, J., J. Zhao, W. M. Zhang, L. F. Zhang, J. P. Wu, and X. R. Yang, 2020: Towards a dry-mass conserving hydrostatic global spectral dynamical core in a general moist atmosphere. Quart. J. Roy. Meteor. Soc., 146, 3206−3224, https://doi.org/10.1002/qj.3842.
Qiu, C.-J., J.-W. Bao, and Q. Xu, 1993: Is the mass sink due to precipitation negligible. Mon. Wea. Rev., 121, 853−857, https://doi.org/10.1175/1520-0493(1993)121<0853:ITMSDT>2.0.CO;2.
Rogers, R. F., 2021: Recent advances in our understanding of tropical cyclone intensity change processes from airborne observations. Atmosphere, 12, 650, https://doi.org/10.3390/atmos12050650.
Schaffer, J. D., P. J. Roebber, and C. Evans, 2020: Development and evaluation of an evolutionary programming-based tropical cyclone intensity model. Mon. Wea. Rev., 148, 1951−1970, https://doi.org/10.1175/MWR-D-19-0346.1.
Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657−1680, https://doi.org/10.1175/JAS-D-11-010.1.
Sun, J., H. L. He, X. M. Hu, D. Q. Wang, C. Gao, and J. B. Song, 2019: Numerical simulations of typhoon Hagupit (2008) using WRF. Wea. Forecasting, 34, 999−1015, https://doi.org/10.1175/WAF-D-18-0150.1.
Tang, B. H., and Coauthors, 2020: Recent advances in research on tropical cyclogenesis. Tropical Cyclone Research and Review, 9(2), 87−105, https://doi.org/10.1016/j.tcrr.2020.04.004.
Vigh, J. L., and Coauthors, 2018: Tropical Cyclone Intensity Change: Internal Influences. Rapporteur Report, Topic 3.1., Ninth International Workshop on Tropical Cyclones (IWTC-IX), Honolulu, Hawaii.
Wang, C. X., Z. H. Zeng, and M. Ying, 2020: Uncertainty in tropical cyclone intensity predictions due to uncertainty in initial conditions. Adv. Atmos. Sci., 37(3), 278−290, https://doi.org/10.1007/s00376-019-9126-6.
Wang, Y. Q., 2009: How do outer spiral Rainbands affect tropical cyclone structure and intensity. J. Atmos. Sci, 66(5), 1250−1273, https://doi.org/10.1175/2008JAS2737.1.
Wang, Y. Q., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes−A review. Meteorol. Atmos. Phys., 87(4), 257−278, https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y. Q., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97−116, https://doi.org/10.1175/2009JAS3143.1.
Wedi, N., and Coauthors, 2015: The modelling infrastructure of the integrated forecasting system: Recent advances and future challenges. ECMWF Technical Memorandum, No. 760, 48 pp,
Wu, J. P., J. Zhao, J. Q. Song, and W. M. Zhang, 2011: Preliminary design of dynamic framework for global non-hydrostatic spectral model. Computer Engineering and Design, 32, 3539−3543, https://doi.org/10.16208/j.issn1000-7024.2011.10.001. (in Chinese with English abstract
Yan, Q., T. Wei, R. L. Korty, J. P. Kossin, Z. S. Zhang, and H. J. Wang, 2016: Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proceedings of the National Academy of Sciences of the United States of America, 113, 12 963−12 967,
Yang, J. H., J. Q. Song, J. P. Wu, F. K. Ying, J. Peng, and H. Z. Leng, 2017: A semi-implicit deep-atmosphere spectral dynamical kernel using a hydrostatic-pressure coordinate. Quart. J. Roy. Meteor. Soc., 143, 2703−2713, https://doi.org/10.1002/qj.3119.
Yin, F. K., G. L. Wu, J. P. Wu, J. Zhao, and J. Q. Song, 2018: Performance evaluation of the fast spherical harmonic transform algorithm in the Yin-He global spectral model. Mon. Wea. Rev., 146, 3163−3182, https://doi.org/10.1175/MWR-D-18-0151.1.
Yin, F. K., J. Q. Song, J. P. Wu, and W. M. Zhang, 2021: An implementation of single-precision fast spherical harmonic transform in Yin-He global spectral model. Quart. J. Roy. Meteor. Soc., 147, 2323−2334, https://doi.org/10.1002/qj.4026.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 5923−5941, https://doi.org/10.1175/JCLI-D-16-0597.1.