Craig, T., and Coauthors, 2018: CICE-consortium/CICE: CICE version 6.0.0. [Available from https://zenodo.org/record/1900639#.YJAnebUzbu0]
Eicken, H., H. R. Krouse, D. Kadko, and D. K. Perovich, 2002: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res., 107, 8046, https://doi.org/10.1029/2000JC000583.
Feltham, D. L., N. Untersteiner, J. S. Wettlaufer, and M. G. Worster, 2006: Sea ice is a mushy layer. Geophys. Res. Lett., 33, L14501, https://doi.org/10.1029/2006GL026290.
Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 609−12 646,
Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419−5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Haapala, J., N. Lönnroth, and A. Stössel, 2005: A numerical study of open water formation in sea ice. J. Geophy. Res., 110, C09011, https://doi.org/10.1029/2003JC002200.
Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 1787−1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.
Hunke, E. C., 2010: Thickness sensitivities in the CICE sea ice model. Ocean Modelling, 34, 137−149, https://doi.org/10.1016/j.ocemod.2010.05.004.
Hunke, E. C., and J. K. Dukowicz, 2002: The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere - incorporation of metric terms. Mon. Wea. Rev., 130, 1848−1865, https://doi.org/10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2.
Hunke, E. C., W. H. Lipscomb, and A. K. Turner, et al., 2013: CICE: The Los Alamos sea ice model documentation and software user’s manual v. 5.0. LA-CC-06-012, 115 pp.
Jeffries, M. O., K. Schwartz, K. Morris, A. D. Veazey, H. R. Krouse, and S. Gushing, 1995: Evidence for platelet ice accretion in Arctic sea ice development. J. Geophys. Res., 100, 10 905−10 914,
Josberger, E. G., 1983: Sea ice melting in the marginal ice zone. J. Geophys. Res., 88, 2841−2844, https://doi.org/10.1029/JC088iC05p02841.
Keen, A., and Coauthors, 2021: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models. The Cryosphere, 15, 951−982, https://doi.org/10.5194/tc-15-951-2021.
Krishfield, R. A., and D. K. Perovich, 2005: Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. J. Geophys. Res., 110, C07021, https://doi.org/10.1029/2004JC002293.
Lipscomb, W. H., E. C. Hunke, W. Maslowski, and J. Jakacki, 2007: Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112, C03S91, https://doi.org/10.1029/2005JC003355.
Malyarenko, A., A. J. Wells, P. J. Langhorne, N. J. Robinson, M. J. M. Williams, and K. W. Nicholls, 2020: Synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models. Ocean Modelling, 154, 101692, https://doi.org/10.1016/j.ocemod.2020.101692.
Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 1550−1575, https://doi.org/10.1029/JC076i006p01550.
Maykut, G. A., and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100, 24 691−24 703,
McPhee, M. G., 1992: Turbulent heat flux in the upper ocean under sea ice. J. Geophy. Res., 97, 5365−5379, https://doi.org/10.1029/92JC00239.
McPhee, M. G., 2002: Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. J. Geophys. Res., 107, 8037, https://doi.org/10.1029/2000JC000633.
McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 7017−7031, https://doi.org/10.1029/JC092iC07p07017.
McPhee, M. G., J. H. Morison, and F. Nilsen, 2008: Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J. Geophys. Res., 113, C06014, https://doi.org/10.1029/2007JC004383.
Mellor, G. L., M. G. McPhee, and M. Steele, 1986: Ice-seawater turbulent boundary layer interaction with melting or freezing. J. Phys. Oceanogr., 16, 1829−1846, https://doi.org/10.1175/1520-0485(1986)016<1829:ISTBLI>2.0.CO;2.
Notz, D., M. G. McPhee, M. G. Worster, G. A. Maykut, K. H. Schlünzen, and H. Eicken, 2003: Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res., 108, 3223, https://doi.org/10.1029/2001JC001173.
Perovich, D., J. Richter-Menge, C. Polashenski, B. Elder, T. Arbetter, and O. Brennick, 2014: Sea ice mass balance observations from the North Pole environmental observatory. Geophys. Res. Lett., 41, 2019−2025, https://doi.org/10.1002/2014GL059356.
Perovich, D. K., and G. A. Maykut, 1990: Solar heating of a stratified ocean in the presence of a static ice cover. J. Geophys. Res., 95, 18 233−18 245,
Perovich, D. K., T. C. Grenfell, J. A. Richter-Menge, B. Light, W. B. Tucker III, and H. Eicken, 2003: Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res., 108, 8050, https://doi.org/10.1029/2001JC001079.
Pringle, D. J., H. Eicken, H. J. Trodahl, and L. G. E. Backstrom, 2007: Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res., 112, C04017, https://doi.org/10.1029/2006JC003641.
Røed, L. P., 1984: A thermodynamic coupled ice-ocean model of the marginal ice zone. J. Phys. Oceanogr., 14, 1921−1929, https://doi.org/10.1175/1520-0485(1984)014<1921:ATCIOM>2.0.CO;2.
Scheduikat, M., and D. J. Olbers, 1990: A one-dimensional mixed layer model beneath the ross ice shelf with tidally induced vertical mixing. Antarctic Science, 2, 29−42, https://doi.org/10.1017/S0954102090000049.
Schmidt, G. A., C. M. Bitz, U. Mikolajewicz, and L. Tremblay, 2004: Ice-ocean boundary conditions for coupled models. Ocean Modelling, 7, 59−74, https://doi.org/10.1016/S1463-5003(03)00030-1.
Shi, X. X., and G. Lohmann, 2017: Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model. Dyn. Atmos. Oceans, 79, 10−30, https://doi.org/10.1016/j.dynatmoce.2017.05.003.
Shi, X. X., D. Notz, J. P. Liu, H. Yang, and G. Lohmann, 2021: Sensitivity of Northern Hemisphere climate to ice-ocean interface heat flux parameterizations. Geoscientific Model Development, 14, 4891−4908, https://doi.org/10.5194/gmd-14-4891-2021.
Tsamados, M., D. L. Feltham, D. Schroeder, D. Flocco, S. L. Farrell, N. Kurtz, S. W. Laxon, and S. Bacon, 2014: Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J. Phys. Oceanogr., 44, 1329−1353, https://doi.org/10.1175/JPO-D-13-0215.1.
Tsamados, M., D. Feltham, A. Petty, D. Schroeder, and D. Flocco, 2015: Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140167, https://doi.org/10.1098/rsta.2014.0167.
Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Am. Meteor. Soc., 83, 255−276, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.
Wettlaufer, J. S., 1991: Heat flux at the ice-ocean interface. J. Geophys. Res., 96, 7215−7236, https://doi.org/10.1029/90JC00081.
Wettlaufer, J. S., N. Untersteiner, and R. Colony, 1990: Estimating oceanic heat flux from sea-ice thickness and temperature data. Annals of Glaciology, 14, 315−318, https://doi.org/10.3189/S026030550000882X.
Woods, A. W., 1992: Melting and dissolving. J. Fluid Mech., 239, 429−448, https://doi.org/10.1017/S0022112092004476.
Yaglom, A. M., and B. A. Kader, 1974: Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Péclet numbers. J. Fluid Mech., 62, 601−623, https://doi.org/10.1017/S0022112074000838.
Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779−808, https://doi.org/10.5194/os-15-779-2019.