Adler, R., J.-J. Wang, M. Sapiano, G. Huffman, D. Bolvin, E. Nelkin, and A. N. C. Program, 2017: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 1.3 (Daily). NOAA National Centers for Environmental Information. [Available online from
Aires, F., C. Prigent, W. B. Rossow, and M. Rothstein, 2001: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. J. Geophys. Res., 106(D14), 14 887−14 907,
Aonashi, K., and Coauthors, 2009a: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119−136, https://doi.org/10.2151/jmsj.87A.119.
Aonashi, K., and Coauthors, 2009b: GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119−136, https://doi.org/10.2151/JMSJ.87A.119.
Bao, Y. S., F. Mao, J. Z. Min, D. M. Wang, and J. Yan, 2014: Retrieval of bare soil moisture from FY-3B/MWRI data. Remote Sensing for Land & Resources, 26(4), 131−137, https://doi.org/10.6046/gtzyyg.2014.04.21.
Baordo, F., and A. J. Geer, 2016: Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval. Quart. J. Roy. Meteor. Soc., 142(700), 2854−2866, https://doi.org/10.1002/qj.2873.
Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, and S.-C. Tsay, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models. J. Geophys. Res., 105, 11 767−11 780,
Berrisford, P., D. P. Dee, P. Poli, R. Brugge, F. Mark, F. Manuel, P. W. Kållberg, S. Kobayashi, S. Uppala and S. Adrian, 2011: The ERA-Interim archive Version 2.0. Shinfield Park, Reading, ECMWF. [Available online from https://www.ecmwf.int/node/8174]
Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94(2), 151−183, https://doi.org/10.2151/JMSJ.2016-009.
Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101(D3), 7209−7225, https://doi.org/10.1029/95JD02135.
Brandt, M., and Coauthors, 2018: Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nature Ecology & Evolution, 2(5), 827−835, https://doi.org/10.1038/S41559-018-0530-6.
Didan, K., 2015: MYD13C2 v006 MODIS/Aqua vegetation indices monthly L3 global 0.05Deg CMG,
Du, J. Y., J. S. Kimball, J. C. Shi, L. A. Jones, S. L. Wu, R. J. Sun, and H. Yang, 2014: Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sensing, 6(9), 8594−8616, https://doi.org/10.3390/rs6098594.
Fan, L., and Coauthors, 2018: Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 205, 210−223, https://doi.org/10.1016/J.RSE.2017.11.020.
Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface Emissivities over the continental United States to benefit GPM-Era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51(1), 378−398, https://doi.org/10.1109/TGRS.2012.2199121.
Forkel, M., and Coauthors, 2019: Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 1, 051005, https://doi.org/10.1088/2515-7620/AB25D2.
Forkel, M., W. Dorigo, G. Lasslop, I. Teubner, E. Chuvieco, and K. Thonicke, 2017: A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 10(12), 4443−4476, https://doi.org/10.5194/GMD-10-4443-2017.
Fujii, H., T. Koike, and K. Imaoka, 2009: Improvement of the AMSR-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data. Journal of the Remote Sensing Society of Japan, 29(1), 282−292, https://doi.org/10.11440/RSSJ.29.282.
Hall, D. K., and G. A. Riggs, 2016: MODIS/Aqua snow cover monthly L3 global 0.05Deg CMG, version 6,
Han, H. J., J. Li, M. Goldberg, P. Wang, J. L. Li, Z. L. Li, B.-J. Sohn, and J. Li, 2016: Microwave sounder cloud detection using a collocated high-resolution imager and its impact on radiance assimilation in tropical cyclone forecasts. Mon. Wea. Rev., 144(10), 3937−3959, https://doi.org/10.1175/MWR-D-15-0300.1.
Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457−3491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.
Hu, J. H., Y. Y. Fu, P. Zhang, Q. L. Min, Z. T. Gao, S. L. Wu, and R. Li, 2021: Satellite retrieval of microwave land surface emissivity under clear and cloudy skies in China using observations from AMSR-E and MODIS. Remote Sensing, 13(19), 3980, https://doi.org/10.3390/RS13193980.
Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res., 114, D07206, https://doi.org/10.1029/2008JD010710.
Jackson, T. J., and T. J. Schmugge, 1991: Vegetation effects on the microwave emission of soils. Remote Sensing of Environment, 36(3), 203−212, https://doi.org/10.1016/0034-4257(91)90057-D.
Jeoung, H., G. S. Liu, K. Kim, G. Lee, and E.-K. Seo, 2020: Microphysical properties of three types of snow clouds: Implication for satellite snowfall retrievals. Atmospheric Chemistry and Physics, 20(23), 14 491−14 507,
Jiang, L. M., P. Wang, L. X. Zhang, H. Yang, and J. T. Yang, 2014: Improvement of snow depth retrieval for FY3B-MWRI in China. Science China Earth Sciences, 57(6), 1278−1292, https://doi.org/10.1007/s11430-013-4798-8.
Jones, M. O., L. A. Jones, J. S. Kimball, and K. C. McDonald, 2011: Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sensing of Environment, 115(4), 1102−1114, https://doi.org/10.1016/J.RSE.2010.12.015.
Karbou, F., C. Prigent, L. Eymard, and J. R. Pardo, 2005: Microwave land emissivity calculations using AMSU measurements. IEEE Trans. Geosci. Remote Sens., 43(5), 948−959, https://doi.org/10.1109/TGRS.2004.837503.
Kerr, Y. H., F. Secherre, J. Lastenet, and J.-P. Wigneron, 2003: SMOS: Analysis of perturbing effects over land surfaces. Proc. IEEE International Geoscience and Remote Sensing Symposium, Toulouse, IEEE, 908−910,
Kim, S., Y. Y. Liu, F. M. Johnson, R. M. Parinussa, and A. Sharma, 2015: A global comparison of alternate AMSR2 soil moisture products: Why do they differ. Remote Sensing of Environment, 161, 43−62, https://doi.org/10.1016/J.RSE.2015.02.002.
Kubota, T., and Coauthors, 2020: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 355−373,
Letu, H., and Coauthors, 2019: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. Remote Sens., 57(6), 3229−3239, https://doi.org/10.1109/TGRS.2018.2882803.
Letu, H., and Coauthors, 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 239, 111583, https://doi.org/10.1016/J.RSE.2019.111583.
Li, R., and Q. L. Min, 2013: Dynamic response of microwave land surface properties to precipitation in Amazon rainforest. Remote Sensing of Environment, 133, 183−192, https://doi.org/10.1016/J.RSE.2013.02.001.
Li, R., and Coauthors, 2020a: Spatiotemporal variations of satellite microwave emissivity difference vegetation index in China under clear and cloudy skies. Earth and Space Science, 7(5), e2020EA001145, https://doi.org/10.1029/2020EA001145.
Li, W. F., X. H. Zhao, J. T. Peng, Z. C. Luo, L. J. Shen, H. Han, P. Zhang, and L. Yang, 2020b: A new Geolocation error estimation method in MWRI data aboard FY3 series satellites. IEEE Geoscience and Remote Sensing Letters, 17(2), 197−201, https://doi.org/10.1109/LGRS.2019.2920660.
Li, X. X., L. X. Zhang, L. Weihermüller, L. M. Jiang, and H. Vereecken, 2014: Measurement and simulation of topographic effects on passive microwave remote sensing over mountain areas: A case study from the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens., 52(2), 1489−1501, https://doi.org/10.1109/TGRS.2013.2251887.
Liang, X., L. P. Jiang, Y. Pan, C. X. Shi, Z. Q. Liu, and Z. J. Zhou, 2020: A 10-yr global land surface reanalysis interim dataset (CRA-Interim/Land): Implementation and preliminary evaluation. Journal of Meteorological Research, 34(1), 101−116, https://doi.org/10.1007/s13351-020-9083-0.
Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1THz. International Journal of Infrared and Millimeter Waves, 12(7), 659−675, https://doi.org/10.1007/BF01008897.
Lin, B. and P. Minnis, 2000: Temporal Variations of Land Surface Microwave Emissivities over the Atmospheric Radiation Measurement Program Southern Great Plains. Site. J. Appl. Meteorol., 39(7), 1103−1116, https://10.1175/1520-0450(2000)039<1103:TVOLSM>2.0.CO;2SS.
Liu, G. S., 1998: A fast and accurate model for microwave radiance calculations. J. Meteor. Soc. Japan, 76(2), 335−343, https://doi.org/10.2151/JMSJ1965.76.2_335.
Liu, G. S., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61(20), 2441−2456, https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.
Liu, G. S., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89(10), 1563−1570, https://doi.org/10.1175/2008BAMS2486.1.
Liu, G. S., 2020: Radar snowfall measurement. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 277−295,
Liu, J. Z., W. F. Li, J. T. Peng, L. J. Shen, H. Han, P. Zhang, and L. Yang, 2021: Geolocation error estimation and correction on long-term MWRI data. IEEE Trans. Geosci. Remote Sens., 59, 9448−9461, https://doi.org/10.1109/TGRS.2021.3051199.
Liu, L. Y., and Coauthors, 2017a: The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003−2010). Remote Sensing of Environment, 199, 302−320, https://doi.org/10.1016/J.RSE.2017.07.012.
Liu, Y. Y., A. I. J. M. van Dijk, R. A. M. de Jeu, J. G. Canadell, M. F. McCabe, J. P. Evans, and G. J. Wang, 2015: Recent reversal in loss of global terrestrial biomass. Nature Climate Change, 5(5), 470−474, https://doi.org/10.1038/NCLIMATE2581.
Liu, Z. Q., and Coauthors, 2017b: CMA global reanalysis (CRA-40): Status and plans. Proc. 5th International Conf. on Reanalysis, Rome, Nat. Meteor. Int. Canter.
Mätzler, C., 2006: Microwave dielectric properties of ice. Thermal Microwave Radiation: Applications for Remote Sensing, C. Mätzler et al., Eds., Inst. Eng. Technol., 455−462.
Mätzler, C., and A. Standley, 2000: Technical note: Relief effects for passive microwave remote sensing. Int. J. Remote Sens., 21(12), 2403−2412, https://doi.org/10.1080/01431160050030538.
Min, Q., and B. Lin, 2006a: Determination of spring onset and growing season leaf development using satellite measurements. Remote Sensing of Environment, 104(1), 96−102, https://doi.org/10.1016/J.RSE.2006.05.006.
Min, Q. L., and B. Lin, 2006b: Remote sensing of evapotranspiration and carbon uptake at harvard forest. Remote Sensing of Environment, 100(3), 379−387, https://doi.org/10.1016/J.RSE.2005.10.020.
Min, Q. L., and S. Y. Wang, 2008: Clouds modulate terrestrial carbon uptake in a midlatitude hardwood forest. Geophys. Res. Lett., 35, L02406, https://doi.org/10.1029/2007GL032398.
Min, Q. L., B. Lin, and R. Li, 2010: Remote sensing vegetation hydrological states using passive microwave measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 124−131, https://doi.org/10.1109/JSTARS.2009.2032557.
Moncet, J.-L., P. Liang, J. F. Galantowicz, A. E. Lipton, G. Uymin, C. Prigent, and C. Grassotti, 2011a: Land surface microwave Emissivities derived from AMSR-E and MODIS measurements with advanced quality control. J. Geophys. Res., 116, D16104, https://doi.org/10.1029/2010JD015429.
Moncet, J.-L., P. Liang, A. E. Lipton, J. F. Galantowicz, and C. Prigent, 2011b: Discrepancies between MODIS and ISCCP land surface temperature products analyzed with microwave measurements. J. Geophys. Res., 116, D21105, https://doi.org/10.1029/2010JD015432.
Noh, Y.-J., G. S. Liu, E.-K. Seo, J. R. Wang, and K. Aonashi, 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111, D22216, https://doi.org/10.1029/2005JD006826.
Noh, Y.-J., G. S. Liu, A. S. Jones, and T. H. V. Haar, 2009: Toward snowfall retrieval over land by combining satellite and in situ measurements. J. Geophys. Res., 114, D24205, https://doi.org/10.1029/2009JD012307.
Norouzi, H., M. Temimi, W. B. Rossow, C. Pearl, M. Azarderakhsh, and R. Khanbilvardi, 2011: The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties. Hydrology and Earth System Sciences, 15(11), 3577−3589, https://doi.org/10.5194/HESS-15-3577-2011.
Norouzi, H., W. Rossow, M. Temimi, C. Prigent, M. Azarderakhsh, S. Boukabara, and R. Khanbilvardi, 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sensing of Environment, 123, 470−482, https://doi.org/10.1016/J.RSE.2012.04.015.
Norouzi, H., M. Temimi, C. Prigent, J. Turk, R. Khanbilvardi, Y. Tian, F. A. Furuzawa and H. Masunaga, 2015: Assessment of the consistency among global microwave land surface emissivity products. Atmospheric Measurement Techniques, 8(3), 1197−1205, https://doi.org/10.5194/AMT-8-1197-2015.
Okamoto, K., N. Takahashi, K. Iwanami, S. Shige, and T. Kubota, 2008: High precision and high resolution global precipitation map from satellite data. Proc. Microwave Radiometry and Remote Sensing of the Environment, Florence, IEEE, 1−4,
Owe, M., R. de Jeu, and J. Walker, 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39(8), 1643−1654, https://doi.org/10.1109/36.942542.
Owe, M., R. de Jeu, and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, https://doi.org/10.1029/2007JF000769.
Prigent, C., W. B. Rossow, and E. Matthews, 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102, 21 867−21 890,
Prigent, C., W. B. Rossow, and E. Matthews, 1998: Global maps of microwave land surface emissivities: Potential for land surface characterization. Radio Sci., 33(3), 745−751, https://doi.org/10.1029/97RS02460.
Prigent, C., J. P. Wigneron, W. B. Rossow, and J. R. Pardo-Carrion, 2000: Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities. IEEE Trans. Geosci. Remote Sens., 38(5), 2373−2386, https://doi.org/10.1109/36.868893.
Prigent, C., F. Aires, and W. B. Rossow, 2003: Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures. J. Geophys. Res., 108(D10), 4310, https://doi.org/10.1029/2002JD002301.
Prigent, C., F. Aires, W. B. Rossow, and A. Robock, 2005: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements. J. Geophys. Res., 110(7), D07110, https://doi.org/10.1029/2004JD005087.
Prigent, C., F. Aires, and W. B. Rossow, 2006: Land surface microwave Emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87(11), 1573−1584, https://doi.org/10.1175/BAMS-87-11-1573.
Prigent, C., E. Jaumouille, F. Chevallier, and F. Aires, 2008: A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates. IEEE Trans. Geosci. Remote Sens., 46(2), 344−352, https://doi.org/10.1109/TGRS.2007.908881.
Prigent, C., P. Liang, Y. Tian, F. Aires, J. L. Moncet and S. A. Boukabara, 2015: Evaluation of modeled microwave land surface emissivities with satellite-based estimates. Journal of Geophysical Research, 120(7), 2706−2718, https://10.1002/2014JD021817SS.
Pulvirenti, L., N. Pierdicca, and F. S. Marzano, 2008: Topographic effects on the surface emissivity of a mountainous area observed by a Spaceborne microwave radiometer. Sensors, 8(3), 1459−1474, https://doi.org/10.3390/S8031459.
Randel, D. L., C. D. Kummerow, and S. Ringerud, 2020: The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measurement, V. Levizzani et al., Eds., Springer, 141−152,
Ringerud, S., C. Kummerow, C. Peters-Lidard, Y. D. Tian, and K. Harrison, 2014: A comparison of microwave window channel retrieved and forward-modeled emissivities over the U.S. southern great plains. IEEE Trans. Geosci. Remote Sens., 52(5), 2395−2412, https://doi.org/10.1109/TGRS.2013.2260759.
Shahroudi, N., and W. Rossow, 2014: Using land surface microwave emissivities to isolate the signature of snow on different surface types. Remote Sensing of Environment, 152, 638−653, https://doi.org/10.1016/J.RSE.2014.07.008.
Shang, H. Z., and Coauthors, 2018: Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Scientific Reports, 8(1), 1105, https://doi.org/10.1038/s41598-018-19431-w.
Shige, S., and Coauthors, 2009: The GSMaP Precipitation retrieval algorithm for microwave sounders—Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens., 47(9), 3084−3097, https://doi.org/10.1109/TGRS.2009.2019954.
Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI Rain Retrievals in Mountainous Areas. J. Appl. Meteorol. Climatol., 52(1), 242−254, https://doi.org/10.1175/JAMC-D-12-074.1.
Sulla-Menashe, D., and M. Friedl, 2015: MCD12C1 v006 MODIS/Terra+Aqua land cover type CMG yearly L3 global 0.05Deg. Available from
Tang, F., and X. L. Zou, 2017: Liquid water path retrieval using the lowest frequency channels of fengyun-3C Microwave Radiation Imager (MWRI). Journal of Meteorological Research, 31(6), 1109−1122, https://doi.org/10.1007/s13351-017-7012-7.
Tang, F., X. L. Zou, H. Yang, and F. Z. Weng, 2016: Estimation and correction of geolocation errors in FengYun-3C microwave radiation imager data. IEEE Trans. Geosci. Remote Sens., 54(1), 407−420, https://doi.org/10.1109/TGRS.2015.2458851.
Taniguchi, A., and Coauthors, 2013: Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. Journal of Hydrometeorology, 14(6), 1859−1871, https://doi.org/10.1175/JHM-D-13-047.1.
Tian, Y. D., and Coauthors, 2014: Quantifying uncertainties in land-surface microwave emissivity retrievals. IEEE Trans. Geosci. Remote Sens., 52(2), 829−840, https://doi.org/10.1109/TGRS.2013.2244214.
Trenberth, K. E., and Coauthors, 2009: Earth's Global Energy Budget. Bull. Amer. Meteorol. Soc., 90(3), 311−323, https://doi.org/10.1175/2008BAMS2634.1.
Ulaby, F. T., R. K. Moore, and A. K. Fung, 1986: From Theory to Applications. Volume III, Microwave Remote Sensing Active and Passive. Artech House Publishers.
Wang, Y., Y. F. Fu, G. S. Liu, Q. Liu, and L. Sun, 2009: A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship. J. Geophys. Res., 114, D21304, https://doi.org/10.1029/2008JD011057.
Wang, Y. P., R. Li, Q. L. Min, Y. F. Fu, Y. Wang, L. Zhong, and Y. Y. Fu, 2019a: A three-source satellite algorithm for retrieving all-sky evapotranspiration rate using combined optical and microwave vegetation index at twenty AsiaFlux sites. Remote Sensing of Environment, 235, 111463, https://doi.org/10.1016/J.RSE.2019.111463.
Wang, Y. P., R. Li, Q. L. Min, L. M. Zhang, G. R. Yu, and Y. Bergeron, 2019b: Estimation of vegetation latent heat Flux over three forest Sites in ChinaFLUX using satellite microwave vegetation water content index. Remote Sensing, 11(11), 1359, https://doi.org/10.3390/RS11111359.
Wang, Y. P., R. Li, J. H. Hu, Y. Y. Fu, J. W. Duan, Y. X. Cheng, and B. B. Song, 2021a: Understanding the non-linear response of summer evapotranspiration to clouds in a temperate forest under the impact of vegetation water content. J. Geophys. Res., 126, e2021JD035239, https://doi.org/10.1029/2021JD035239.
Wang, Y. P., R. Li, J. H. Hu, X. W. Wang, C. Kabeja, Q. L. Min, and Y. Wang, 2021b: Evaluations of MODIS and microwave based satellite evapotranspiration products under varied cloud conditions over East Asia forests. Remote Sensing of Environment, 264, 112606, https://doi.org/10.1016/j.rse.2021.112606.
Wang, Y. P., R. Li, J. H. Hu, Y. Y. Fu, J. W. Duan, and Y. X. Cheng, 2021c: Daily estimation of gross primary production under all sky using a light use efficiency model coupled with satellite passive microwave measurements. Remote Sensing of Environment, 267, 112721, https://doi.org/10.1016/j.rse.2021.112721.
Wigneron, J.-P., A. Chanzy, J.-C. Calvet, and N. Bruguier, 1995: A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sensing of Environment, 51(3), 331−341, https://doi.org/10.1016/0034-4257(94)00081-W.
Wigneron, J.-P., and Coauthors, 2017: Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-Band SMOS & SMAP soil moisture retrieval algorithms. Remote Sensing of Environment, 192, 238−262, https://doi.org/10.1016/J.RSE.2017.01.024.
Wu, B. H., Y. Wang, C.-Z. Zou, R. Li, S. Liu, G. S. Liu, and Y. F. Fu, 2020: A fundamental climate data record derived from AMSR-E, MWRI, and AMSR2. IEEE Trans. Geosci. Remote Sens., 58(8), 5450−5461, https://doi.org/10.1109/TGRS.2020.2966055.
Wu, Y., B. Qian, Y. S. Bao, G. P. Petropoulos, X. L. Liu, and L. Li, 2019: Microwave land emissivity calculations over the Qinghai-Tibetan Plateau using FY-3B/MWRI measurements. Remote Sensing, 11(19), 2206, https://doi.org/10.3390/rs11192206.
Xie, X. X., S. L. Wu, H. X. Xu, W. M. Yu, J. K. He, and S. Y. Gu, 2019: Ascending–descending bias correction of microwave radiation imager on board FengYun-3C. IEEE Trans. Geosci. Remote Sens., 57(6), 3126−3134, https://doi.org/10.1109/TGRS.2018.2881094.
Yang, H., and F. Z. Weng, 2011a: Error sources in remote sensing of microwave land surface emissivity. IEEE Trans. Geosci. Remote Sens., 49(9), 3437−3442, https://doi.org/10.1109/TGRS.2011.2125794.
Yang, H., and Coauthors, 2011b: The FengYun-3 microwave radiation imager on-orbit verification. IEEE Trans. Geosci. Remote Sens., 49(11), 4552−4560, https://doi.org/10.1109/TGRS.2011.2148200.
Yang, H., X. L. Zou, X. Q. Li, and R. You, 2012: Environmental data records from FengYun-3B microwave radiation imager. IEEE Trans. Geosci. Remote Sens., 50(12), 4986−4993, https://doi.org/10.1109/TGRS.2012.2197003.
You, Y. L., F. J. Turk, Z. S. Haddad, L. Li, and G. S. Liu, 2014: Principal components of Multifrequency microwave land surface Emissivities. Part II: Effects of previous-time precipitation. Journal of Hydrometeorology, 15(1), 20−37, https://doi.org/10.1175/JHM-D-13-07.1.
Zhang, A. Z., and G. S. Jia, 2013: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12−23, https://doi.org/10.1016/J.RSE.2013.02.023.
Zhang, P., and Coauthors, 2019: Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36(9), 1027−1045, https://doi.org/10.1007/S00376-019-8215-X.