Allison, M. A. and E. A. Meselhe, 2010: The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration. J. Hydrol., 387(3-4), 346−360, https://doi.org/10.1016/j.jhydrol.2010.04.001.
Brunke, M. A., and Coauthors, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, version 4.5 (CLM4.5). J. Climate, 29(9), 3441−3461, https://doi.org/10.1175/Jcli-D-15-0307.1.
Carbon Disclosure Project, 2010: Carbon Disclosure Project reveals water constraints now a boardroom issue for global corporations, London: Carbon Disclosure Project, Media Release.
Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249−266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.
Chen, Y., I. Velicogna, J. S. Famiglietti, and J. T. Randerson, 2013: Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J. Geophys. Res., 118, 495−504, https://doi.org/10.1002/jgrg.20046.
Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., Neumayer, K.-H. 2012: GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005, (Scientific Technical Report - Data; 12/02), Potsdam: Deutsches GeoForschungsZentrum GFZ, 20 pp. https://doi.org/10.2312/GFZ.b103-12020
Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 98, 704−716, https://doi.org/10.1109/JPROC.2010.2043918.
Haddeland, I., and Coauthors, 2014: Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3251−3256, https://doi.org/10.1073/pnas.1222475110.
Kalra, A., T. C. Piechota, R. Davies, and G. A. Tootle, 2008: Changes in U.S. streamflow and western U.S. snowpack. Journal of Hydrologic Engineering, 13(3), 156−163, https://doi.org/10.1061/(ASCE)1084-0699(2008)13:3(156).
Koster, R. D., and Coauthors, 2011: The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. Journal of Hydrometeorology, 12(5), 805−822, https://doi.org/10.1175/2011JHM1365.1.
Kuehne, J., and C. R. Wilson, 1991: Terrestrial water storage and polar motion. J. Geophys. Res., 96, 4337−4345, https://doi.org/10.1029/90JB02573.
Landerer F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.
Lawrence, D. M., and Coauthors, 2019: The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245−4287, https://doi.org/10.1029/2018MS001583.
Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903−1925, https://doi.org/10.5194/gmd-10-1903-2017.
McColl, K. A., S. H. Alemohammad, R. Akbar, A. G. Konings, S. Yueh, D. Entekhabi, 2017: The global distribution and dynamics of surface soil moisture. Nature Geoscience, 10, 100−104, https://doi.org/10.1038/NGEO2868.
Meybeck, M., 2003: Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1440), 1935−1955, https://doi.org/10.1098/rstb.2003.1379.
Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, 453−469, https://doi.org/10.5194/hess-15-453-2011.
Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522.
Pelletier, J. D., and Coauthors, 2016: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8(1), 41−65, https://doi.org/10.1002/2015ms000526.
Piao, S. L., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43−51, https://doi.org/10.1038/nature09364.
Piao, S. L., and Coauthors, 2012: The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 9, 3571−3586, https://doi.org/10.5194/bg-9-3571-2012.
Pokhrel, Y. N., N. Hanasaki, P. J-F. Yeh, T. J. Yamada, S. Kanae, and T. Oki, 2012: Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nature Geoscience, 5, 389−392, https://doi.org/10.1038/ngeo1476.
Reager, J. T., and J. S. Famiglietti, 2009: Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett., 36, L23402, https://doi.org/10.1029/2009GL040826.
Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res., 121, 7547−7569, https://doi.org/10.1002/2016JB013007.
Scanlon, B. R., C. C. Faunt, L. Longuevergne, R. C. Reedy, W. M. Alley, V. L. McGuire, and P. B. McMahon, 2012: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9320−9325, https://doi.org/10.1073/pnas.1200311109.
Scanlon, B. R., and Coauthors, 2018: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 115, E1080−E1089, https://doi.org/10.1073/pnas.1704665115.
Schewe, J., and Coauthors, 2014: Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111, 3245−3250, https://doi.org/10.1073/pnas.1222460110.
Stahl, K., and Coauthors, 2010: Streamflow trends in Europe: Evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 14(12), 2367−2382, https://doi.org/10.5194/hess-14-2367-2010.
Swenson, S. C., 2012: GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO. DAAC, CA, USA. Available online from https://doi.org/10.5067/TELND-NC005.
Swenson, S. C., and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285.
Syed, T. H., J. S. Famiglietti, M. Rodell, J. L. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779.
Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the Earth system. Science, 305, 503−505, https://doi.org/10.1126/science.1099192.
Trenberth, K. E., and G. R. Asrar, 2014: Challenges and opportunities in water cycle research: WCRP contributions. Surveys in Geophysics, 35, 515−532, https://doi.org/10.1007/s10712-012-9214-y.
Udo, S., B. Andreas, F. Peter, M.-C. Anja, R. Bruno, and Z. Markus, 2011: GPCC Full Data Monthly Product Version 7.0 (at 0.5°, 1.0°, 2.5°): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100.
Viovy, N., 2018: CRUNCEP Version 7-Atmospheric forcing data for the community land model. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/PZ8F-F017.
Vörösmarty, C. J., and Coauthors, 2010: Global threats to human water security and river biodiversity. Nature, 467(7315), 555−561, https://doi.org/10.1038/nature09440.
Wiese, D. N., F. W. Landerer, and M. M. Watkins, 2016: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res., 52, 7490−7502, https://doi.org/10.1002/2016WR019344.
Xia, Y. L., D. Mocko, M. Y. Huang, B. L. Li, M. Rodell, K. E. Mitchell, X. T. Cai, and M. B. Ek, 2017: Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. Journal of Hydrometeorology, 18, 624−649, https://doi.org/10.1175/JHM-D-16-0112.1.
Xiao, Z. Q., S. L. Liang, J. D. Wang, Y. Xiang, X. Zhao, and J. L. Song, 2016: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens., 54(9), 5301−5318, https://doi.org/10.1109/TGRS.2016.2560522.
Yang, Z.-L., R. E. Dickinson, A. Henderson-Sellers, and A. J. Pitman, 1995: Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res., 100(D8), 16 553−16 578, https://doi.org/10.1029/95JD01076.
Yuan, X., and E. D. Zhu, 2018: A first look at decadal hydrological predictability by land surface ensemble simulations. Geophys. Res. Lett., 45, 2362−2369, https://doi.org/10.1002/2018GL077211.
Yuan, X., J. K. Roundy, E. F. Wood, and J. Sheffield, 2015: Seasonal forecasting of global hydrologic extremes: System development and evaluation over GEWEX basins. Bull. Am. Meteor. Soc., 96, 1895−1912, https://doi.org/10.1175/BAMS-D-14-00003.1.
Zhang, Y., and Coauthors, 2018: A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010. Hydrology and Earth System Sciences, 22(1), 241−263, https://doi.org/10.5194/hess-22-241-2018.
Zhu, E. D., X. Yuan, and A. W. Wood, 2019: Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. Nature Communications, 10, 1237, https://doi.org/10.1038/s41467-019-09245-3.