Atmospheric Radiation Measurement Program Plan, 1990: U.S. Department of Energy. DOE/ER204441, Washington, 116 pp.
Badescu, V., and Coauthors, 2013: Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renewable Energy, 55, 85−103, https://doi.org/10.1016/j.renene.2012.11.037.
Berg, L. K., E. I. Kassianov, C. N. Long, and D. L. Mills Jr., 2011: Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res., 116, D01202, https://doi.org/10.1029/2010JD014593.
Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13(1), 264−286, https://doi.org/10.1175/1520-0442(2000)013<0264:Reoctv>2.0.Co;2.
Dong, X. Q., B. K. Xi, and P. Minnis, 2006: A climatology of midlatitude continental clouds from the ARM SGP central facility. Part II: Cloud fraction and surface radiative forcing. J. Climate, 19(9), 1765−1783, https://doi.org/10.1175/jcli3710.1.
Dong, X. Q., B. K. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe, 2010: A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res., 115(D17), D17212, https://doi.org/10.1029/2009jd013489.
Duchon, C. E., and M. S. O'Malley, 1999: Estimating cloud type from pyranometer observations. J. Appl. Meteorol., 38(1), 132−141, https://doi.org/10.1175/1520-0450(1999)038<0132:Ectfpo>2.0.Co;2.
Gao, C. C., Y. Y. Li, and H. W. Chen, 2019: Diurnal variations of different cloud types and the relationship between the diurnal variations of clouds and precipitation in central and East China. Atmosphere, 10(6), 304, https://doi.org/10.3390/atmos10060304.
Gueymard, C. A., 2008: REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset. Solar Energy, 82(3), 272−285, https://doi.org/10.1016/j.solener.2007.04.008.
Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1−16, https://doi.org/10.1016/S0034-4257(98)00031-5.
Huo, J., Y. F. Tian, X. Wu, C. Z. Han, B. Liu, Y. H. Bi, S. Duan, and D. R. Lyu, 2020: Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017. Atmospheric Chemistry and Physics, 20(22), 14 377−14 392,
Illingworth, A. J., and Coauthors, 2007: Cloudnet - Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88(6), 883−898, https://doi.org/10.1175/bams-88-6-883.
IPCC, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, 996 pp.
IPCC, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 571−657.
Kim, D., and V. Ramanathan, 2008: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res., 113(D2), D02203, https://doi.org/10.1029/2007JD008434.
Lau, N.-C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125(12), 3172−3189, https://doi.org/10.1175/1520-0493(1997)125<3172:Csasoo>2.0.Co;2.
Liu, M. Q., J. Q. Zhang, and X. G. Xia, 2021a: Evaluation of multiple surface irradiance-based clear sky detection methods at Xianghe—A heavy polluted site on the North China Plain. Atmospheric and Oceanic Science Letters, 14, 100016, https://doi.org/10.1016/j.aosl.2020.100016.
Liu, M. Q., X. G. Xia, D. S. Fu, and J. Q. Zhang, 2021b: Development and validation of machine-learning clear-sky detection method using 1-min irradiance data and sky imagers at a polluted suburban site, Xianghe. Remote Sensing, 13(18), 3763, https://doi.org/10.3390/rs13183763.
Mateos, D., M. Antón, A. Valenzuela, A. Cazorla, F. J. Olmo, and L. Alados-Arboledas, 2013: Short-wave radiative forcing at the surface for cloudy systems at a midlatitude site. Tellus B: Chemical and Physical Meteorology, 65(1), 21069, https://doi.org/10.3402/tellusb.v65i0.21069.
McFarlane, S. A., C. N. Long, and J. Flaherty, 2013: A climatology of surface cloud radiative effects at the ARM tropical western pacific sites. J. Appl. Meteor. Climatol., 52(4), 996−1013, https://doi.org/10.1175/jamc-d-12-0189.1.
Morris, V. R., 2005: Total sky imager hand book [EB /OL]. http://www.arm.gov/.
Ohmura, A., and Coauthors, 1998: Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79(10), 2115−2136, https://doi.org/10.1175/1520-0477(1998)079<2115:Bsrnbw>2.0.Co;2.
Roesch, A., M. Wild, A. Ohmura, E. G. Dutton, C. N. Long, and T. Zhang, 2011: Assessment of BSRN radiation records for the computation of monthly means. Atmospheric Measurement Techniques, 4(2), 339−354, https://doi.org/10.5194/amt-4-339-2011.
Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18(2), 237−273, https://doi.org/10.1175/jcli-3243.1.
Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 7(1), 10266, https://doi.org/10.1038/ncomms10266.
Wang, Q. Y., H. Zhang, S. Yang, Q. Chen, X. X. Zhou, G. Y. Shi, Y. M. Cheng, and M. Wild, 2021: Potential driving factors on surface solar radiation trends over China in recent years. Remote Sensing, 13, 704, https://doi.org/10.3390/rs13040704.
Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40(11), 3107−3134, https://doi.org/10.1007/s00382-012-1569-8.
Wild, M., M. Z. Hakuba, D. Folini, P. Dörig-Ott, C. Schär, S. Kato, and C. N. Long, 2019: The cloud-free global energy balance and inferred cloud radiative effects: An assessment based on direct observations and climate models. Climate Dyn., 52(7−8), 4787−4812, https://doi.org/10.1007/s00382-018-4413-y.
Zhang, X., S. C. Tan, and G. Y. Shi, 2018: Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain. Adv. Atmos. Sci., 35(2), 146−157, https://doi.org/10.1007/s00376-017-7070-x.
Zhao, C. F., Y. Y. Chen, J. M. Li, H. Letu, Y. F. Su, T. M. Chen, and X. L. Wu, 2019: Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua moderate resolution imaging spectroradiometer observations. International Journal of Climatology, 39(5), 2612−2629, https://doi.org/10.1002/joc.5975.
Zhao, X., H. K. Wei, Y. Shen, and K. J. Zhang, 2018: Real-time clear-sky model and cloud cover for direct normal irradiance prediction. Journal of Physics: Conference Series, 1072, 012003, https://doi.org/10.1088/1742-6596/1072/1/012003.