Andersson, E., J. Pailleux, J.-N. Thépaut, J. R. Eyre, A. P. McNally, G. A. Kelly, and P. Courtier, 1994: Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 120, 627−653, https://doi.org/10.1002/qj.49712051707.
Bormann, N., 2017: Slant path radiative transfer for the assimilation of sounder radiances. Tellus A, 69, 1272779, https://doi.org/10.1080/16000870.2016.1272779.
Bormann, N., H. Lawrence, and J. Farnan, 2019: Global observing system experiments in the ECMWF assimilation system. ECMWF Tech. Memo, 839, 23 pp.
Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53(22), 3433−3445, https://doi.org/10.1007/s11434-008-0494-z.
Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, ECMWF, 97−112.
Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323−3343, https://doi.org/10.1256/qj.05.137.
Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126(8), 2287−2299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.
Di Tomaso, E., and N. Bormann, 2011: Assimilation of ATOVS radiances at ECMWF: First year EUMETSAT fellowship report. EUMETSAT/ECMWF Fellowship Progress Report No. 22, 33 pp.
Dong, C. H., and Coauthors, 2009: An overview of a new Chinese weather satellite FY-3A. Bull. Amer. Meteor. Soc., 90(10), 1531−1544, https://doi.org/10.1175/2009BAMS2798.1.
Dong, P., F. Weng, Q. Huang, and H. Yang, 2017: Estimation of cloud liquid water over oceans from dual oxygen absorption band to support the assimilation of second generation of microwave observation on board the Chinese FY-3 satellite. Int. J. Remote Sens., 38(18), 5003−5021, https://doi.org/10.1080/01431161.2017.1331056.
Duncan, D. I., and N. Bormann, 2020: On the addition of microwave sounders and NWP skill, including assessment of FY-3D sounders. EUMETSAT/ECMWF Fellowship Programme Research Report No. 55, 1--21.
Duncan D. I., N. Bormann, A. J. Geer, and W. Peter, 2022: Assimilation of AMSU-A in all-sky conditions. Mon. Wea. Rev., 150, 1023−1041, https://doi.org/10.1175/MWR-D-21-0273.1.
Eyre, J. R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. European Centre for Medium-Range Weather Forecasts. Tech. Memo. 199, 34 pp.
Eyre, J. R., and S. J. English, 2008: Impact studies with satellite data at the Met Office. Proc. 4th WMO Workshop on “The Impact of Various Observing Systems on NWP”, Geneva, 19−21 May 2008. [Available online from http://www.wmo.int/pages/prog/www/OSY/Reports/NWP-4_Geneva2008_index.html]
Fourrié, N., A. Doerenbecher, T. Bergot, and A. Joly, 2002: Adjoint sensitivity of the forecast to TOVS observations. Quart. J. Roy. Meteor. Soc., 128(586), 2759−2777, https://doi.org/10.1256/qj.01.167.
Geer, A. J., and P. Bauer, 2010: Enhanced use of all-sky microwave observations sensitive to water vapour, cloud and precipitation. EUMETSAT/ECMWF Tech. Rep. 20, 41 pp, https://doi.org/10.21957/mi79jebka.
Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191−1217, https://doi.org/10.1002/qj.3202.
Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138(11), 4009−4025, https://doi.org/10.1175/2010MWR3393.1.
Guan L., X. Zou, F. Weng and G. Li, 2011: Assessments of FY-3A Microwave Humidity Sounder (MWHS) measurements using NOAA-18 Microwave Humidity Sounder (MHS). J. Geophy. Res., 116, D10106, https://doi.org/10.1029/2010JD015412.
Gu, S., Y. Guo, Z. Wang, and N. Lu, 2012: Calibration analyses for sounding channels of MWHS onboard FY-3A. IEEE Transactions on Geoscience and Remote Sensing, 50(12), 4885−4891, https://doi.org/10.1109/TGRS.2012.2214391.
Han, Y., and X. Hou, 2020: Evaluation of the in-orbit performance of the microwave temperature sounder onboard the FY-3D satellite using different radiative transfer models. Journal of Quantitative Spectroscopy & Radiative Transfer, 253, 107041.
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127(574), 1453−1468, https://doi.org/10.1002/qj.49712757418.
Kan, W., Y. Han, F. Weng, and L. Guan, 2020: Multisource Assessments of the FengYun-3D Microwave Humidity Sounder (MWHS) On-Orbit Performance. IEEE Trans. Geosci. Remote Sens., 99, 1−11.
Lawrence, H., N. Bormann, A. J. Geer, Q. Lu, and S. J. English, 2018: Evaluation and assimilation of the microwave sounder MWHS-2 onboard FY-3C in the ECMWF numerical weather prediction system. IEEE Trans. Geosci. Remote Sens., 56(6), 3333−3349, https://doi.org/10.1109/TGRS.2018.2798292.
Li, J., and G. Liu, 2016a: Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech., 9(7), 3095−3113, https://doi.org/10.5194/amt-9-3095-2016.
Li, J., and X. L. Zou, 2013: A quality control procedure for FY-3A MWTS measurements with emphasis on cloud detection using VIRR cloud fraction. J. Atmos. Oceanic Technol., 30(8), 1704−1715, https://doi.org/10.1175/JTECH-D-12-00164.1.
Li, J., and X. L. Zou, 2014: Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Frontiers of Earth Science, 8(2), 251−263, https://doi.org/10.1007/s11707-014-0405-3.
Li, J., and G. Q. Liu, 2016b: Assimilation of Chinese Fengyun-3B Microwave Temperature Sounder radiances into the Global GRAPES system with an improved cloud detection threshold. Frontiers of Earth Science, 10, 145−158, https://doi.org/10.1007/s11707-015-0499-2.
Li, J., Z. K. Qin, and G. Q. Liu, 2016: A new generation of Chinese FY-3C microwave sounding measurements and the initial assessments of its observations. Int. J. Remote Sens., 37(17), 4035−4058, https://doi.org/10.1080/01431161.2016.1207260.
Li, J., A. J. Geer, K. Okamoto, J. A. Otkin, Z. Q. Liu, W. Han, and P. Wang, 2022: Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv. Atmos. Sci., 39, 9−21, https://doi.org/10.1007/s00376-021-1088-9.
Li, X., X. L. Zou, X. Y. Zhuge, M. J. Zeng, N. Wang, and F. Tang, 2020: Improved Himawari-8/AHI radiance data assimilation with a double cloud detection scheme. J. Geophys. Res., 125(13), e2020JD032631, https://doi.org/10.1029/2020JD032631.
Li, X., X. L. Zou, M. J. Zeng, N. Wang, and F. Tang, 2021: Exploring the assimilation of ATMS cloud retrieval products and its benefits for CrIS all-sky radiance simulations. Mon. Wea. Rev., 149, 1873−1901, https://doi.org/10.1175/MWR-D-20-0345.1.
Lu, Q. F., and W. Bell, 2012: Evaluation of FY-3B data and an assessment of passband shifts in AMSU-A and MSU during the period 1978−2012. Interim Report of Visiting Scientist mission NWP_11_05, Document NWPSAF-EC-VS-023, Version 0.1, 8 pp.
Lu, Q. F., W. Bell, P. Bauer, N. Bormann, and C. Peubey, 2010: An initial evaluation of FY-3A satellite data. ECMWF Technical Memoranda Number 631, 58 pp, https://doi.org/10.21957/oqzhktv6o.
Mao, J., Z. Qin, J. Li, Y. Han, and J. Huang, 2022: Performance evaluation and noise mitigation of the FY-3E microwave humidity sounder. Remote Sens, 14, 4835, https://doi.org/10.3390/rs14194835.
McNally, A. P., J. C. Derber, W. Wu, and B. B. Katz, 2000: The use of TOVS level-1b radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126(563), 689−724, https://doi.org/10.1002/qj.49712656315.
Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Centers spectral statistical in nterpolation analysis system. Mon. Wea. Rev., 120(8), 1747−1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Qian, X. L., Z. K. Qin, J. Li, Y. Han, and G. Q. Liu, 2022: Preliminary evaluation of FY-3E microwave temperature sounder performance based on observation minus simulation. Remote Sensing, 14, 2250, https://doi.org/10.3390/rs14092250.
Qin, Z., X. Zou, and F. Weng, 2013: Analysis of ATMS striping noise from its Earth scene observations. Journal of Geophysical Research: Atmospheres, 118(23), 13214−13229, https://doi.org/10.1002/2013JD020399.
Qin, Z. and X. Zou, 2016: Uncertainty in FengYun-3C Microwave Humidity Sounder measurements at 118 GHz with respect to simulations from GPS RO data. IEEE Trans. Geo. Remote Sensing, 54(12), 6907−6918, https://doi.org/10.1109/TGRS.2016.2587878.
Riishojgaard, L. P., S. P. F. Casey, M. Masutani, J. Woollen, T. Zhu, and R. Atlas, 2012: Observing System Simulation Experiments for An Early-Morning-Orbit Meteorological Satellite in the Joint Center for Satellite Data Assimilation. [Available from https://www-cdn-int.eumetsat.int/files/2020-04/pdf_conf_p_s12_03_casey_v.pdf]
Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407−1425, https://doi.org/10.1002/qj.1999.49712555615.
Shen, X. S., J. J. Wang, Z. C. Li, D. H. Chen, and J. D. Gong, 2020: China’s independent and innovative development of numerical weather prediction. Acta Meteorologica Sinica, 78(3), 451−476, https://doi.org/10.11676/qxxb2020.030. (in Chinese with English abstract
Wang, X., and X. L. Zou, 2012: Quality assessments of Chinese FengYun-3B Microwave Temperature Sounder (MWTS) measurements. IEEE Trans. Geosci. Remote Sens, 50(12), 4875−4884, https://doi.org/10.1109/TGRS.2012.2196438.
Weng, F., and N. C. Grody, 1994: Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res., 99(D12), 25535−25551, https://doi.org/10.1029/94JD02304.
Weng, F. Z., L. M. Zhao, R. R. Ferraro, G. Poe, X. F. Li, and N. C. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38(4), 33-1−33-13, https://doi.org/10.1029/2002RS002679.
Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130(12), 2905−2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.
Xue, J. S., S. Y. Zhuang, G. F. Zhu, H. Zhang, Z. Q. Liu, Y. Liu, and Z. R. Zhuang, 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53(22), 3446−3457, https://doi.org/10.1007/s11434-008-0416-0.
Yang, J., C. Dong, N. Lu, Z. Yang, J. Shi, P. Zhang, Y. Liu, and B. Cai, 2009: FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteor. Sin., 67, 501−509.
You, R., S. Y. Gu, Y. Guo, X. B. Wu, H. Yang, and W. X. Chen, 2012: Long-term calibration and accuracy assessment of the FengYun-3 Microwave Temperature Sounder radiance measurements. IEEE Trans. Geosci. Remote Sens., 50, 4854−4859, https://doi.org/10.1109/TGRS.2012.2200257.
Zhang, L., and Coauthors, 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882−1896, https://doi.org/10.1002/qj.3533.
Zhang, P., J. Yang, C. H. Dong, N. M. Lu, Z. D. Yang, and J. M. Shi, 2009: General introduction on payloads, ground segment and data application of Fengyun 3A. Frontiers of Earth Science in China, 3(3), 367−373, https://doi.org/10.1007/s11707-009-0036-2.
Zhang, P., X. Q. Hu, Q. F. Lu, A. J. Zhu, M. Y. Lin, L. Sun, L. Chen, and N. Xu, 2022: FY-3E: The first operational meteorological satellite mission in an early morning orbit. Adv. Atmos. Sci., 39(1), 1−8, https://doi.org/10.1007/s00376-021-1304-7.
Zou, X., Z. Qin and F. Weng, 2016: Impact of dawn–dusk satellite AMSU-A data on quantitative precipitation forecasts and the implications for three-orbit constellation. Chinese Journal of Atmospheric Sciences, 1, 46−62, https://doi.org/10.3878/j.issn.1006-9895.1508.15137.