Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217−223, https://doi.org/10.1256/wea.74.04.
Chen, R. D., Z. P. Wen, R. Y. Lu, and C. Z. Wang, 2019: Causes of the extreme hot midsummer in central and South China during 2017: Role of the western Tropical Pacific warming. Adv. Atmos. Sci., 36, 465−478, https://doi.org/10.1007/s00376-018-8177-4.
Deng, K. Q., S. Yang, M. F. Ting, P. Zhao, and Z. Y. Wang, 2019: Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Climate, 32, 3761−3775, https://doi.org/10.1175/JCLI-D-18-0256.1.
Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5, 560−564, https://doi.org/10.1038/nclimate2617.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nature Climate Change, 11, 689−695, https://doi.org/10.1038/s41558-021-01092-9.
Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22(5), 1082−1103, https://doi.org/10.1175/2008JCLI2459.1.
Gessner, C., E. M. Fischer, U. Beyerle, and R. Knutti, 2021: Very rare heat extremes: Quantifying and understanding using ensemble reinitialization. J. Climate, 34, 6619−6634, https://doi.org/10.1175/JCLI-D-20-0916.1.
Gillett, N. P., and Coauthors, 2016: The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Development, 9, 3685−3697, https://doi.org/10.5194/gmd-9-3685-2016.
Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465−469, https://doi.org/10.1038/nature14550.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker et al., Eds., Cambridge University Press, 1535 pp.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 4761−4784, https://doi.org/10.1175/JCLI-D-11-00575.1.
Li, J. P., and C. Q. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environmental Research Letters, 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.
Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the northern Hemisphere Mid-high latitudes on East Asian Climate: A review. Adv. Atmos. Sci., 36, 902−921, https://doi.org/10.1007/s00376-019-8236-5.
Ma, S. M., T. J. Zhou, D. A. Stone, O. Angélil, and H. Shiogama, 2017: Attribution of the July–August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environmental Research Letters, 12(5), 054020, https://doi.org/10.1088/1748-9326/aa69d2.
Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol., 29, 897−910, https://doi.org/10.1175/JTECH-D-11-00103.1.
Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res., 120, 3209−3227, https://doi.org/10.1002/2014JD022848.
Overland, J. E., 2021: Causes of the record-breaking Pacific Northwest Heatwave, Late June 2021. Atmosphere, 12(11), 1434, https://doi.org/10.3390/atmos12111434.
Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea Ice Decline: A numerical study with CAM5. J. Climate, 27, 244−264, https://doi.org/10.1175/JCLI-D-13-00272.1.
Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, https://doi.org/10.1029/2012GL053361.
Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nature Communications, 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.
Philip, S. Y., and Coauthors, 2022: Rapid attribution analysis of the extraordinary heatwave on the Pacific coast of the US and Canada June 2021. Earth System Dynamics,
Ramamurthy, P., J. González, L. Ortiz, M. Arend, and F. Moshary, 2017: Impact of heatwave on a megacity: An observational analysis of New York City during July 2016. Environmental Research Letters, 12, 054011, https://doi.org/10.1088/1748-9326/aa6e59.
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473−5496, https://doi.org/10.1175/2007JCLI1824.1.
Seong, M.-G., S.-K. Min, Y.-H. Kim, X.-B. Zhang, and Y. Sun, 2021: Anthropogenic greenhouse gas and aerosol contributions to extreme temperature changes during 1951−2015. J. Climate, 34, 857−870, https://doi.org/10.1175/JCLI-D-19-1023.1.
Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610−614, https://doi.org/10.1038/nature03089.
Sturaro, G. 2003: A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Climate Dyn., 21, 309−316.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110, 2718−2722, https://doi.org/10.1073/pnas.1214626110.
Wang, C. Z., Y. L. Yao, H. L. Wang, X. B. Sun, and J. Y. Zheng, 2021: The 2020 summer floods and 2020/21 winter extreme cold surges in China and the 2020 typhoon season in the western North Pacific. Adv. Atmos. Sci., 38, 896−904, https://doi.org/10.1007/s00376-021-1094-y.
Wang, J., Y. Chen, S. F. B. Tett, Z. W. Yan, P. M. Zhai, J. M. Feng, and J. J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nature Communications, 11, 528, https://doi.org/10.1038/s41467-019-14233-8.
Wang, P. Y., J. P. Tang, X. G. Sun, S. Y. Wang, J. Wu, X. N. Dong, and J. Fang, 2017: Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. J. Geophys. Res., 122, 10 679−10 699.
Wu, Z. W., H. Lin, J. P. Li, Z. H. Jiang, and T. T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, https://doi.org/10.1029/2011JD016908.
Zheng, J. Y., and C. Z. Wang, 2019: Hot summers in the northern Hemisphere. Geophys. Res. Lett., 46, 10 891−10 900.
Zhou, G. D., 2019: Atmospheric response to sea surface temperature anomalies in the mid-latitude oceans: A brief review. Atmosphere-Ocean, 57(5), 319−328, https://doi.org/10.1080/07055900.2019.1702499.