Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789−810, https://doi.org/10.1175/2011MWR3643.1.
Atlas, D., K. R. Hardy, R. Wexler, and R. J. Boucher, 1963: On the origin of hurricane spiral bands. Geofísica Internacional, 3, 123−132.
Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in hurricane Irene (1981). Mon. Wea. Rev., 114, 2590−2601, https://doi.org/10.1175/1520-0493(1986)114<2590:TSADOA>2.0.CO;2.
Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125−2137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.
Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776−794, https://doi.org/10.1175/1520-0493(1991)119<0776:ACCIAH>2.0.CO;2.
Braun, S. A., and L. G. Wu, 2007: A numerical study of hurricane Erin (2001). Part II: Shear and the organization of Eyewall vertical motion. Mon. Wea. Rev., 135, 1179−1194, https://doi.org/10.1175/MWR3336.1.
Bryan, G. H., Stern, D. P., and R. Rotunno, 2014: A framework for studying the inner core of tropical cyclones using large eddy simulation. Proc. 31st Conf. Hurricanes and Tropical Meteorology. San Diego, CA, Amer. Meteor. Soc.
Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269−3293, https://doi.org/10.1175/2009MWR2827.1.
Didlake, A. C., Jr., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in hurricane Rita (2005). J. Atmos. Sci., 68, 1620−1636, https://doi.org/10.1175/2011JAS3715.1.
Didlake, A. C., Jr., and R. A. Houze Jr., 2013a: Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos. Sci., 70, 504−523, https://doi.org/10.1175/JAS-D-12-0134.1.
Didlake, A. C., Jr., and R. A. Houze Jr., 2013b: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891−1911, https://doi.org/10.1175/JAS-D-12-0245.1.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044−2061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249−2269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.
Giangrande, S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013: A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J. Appl. Meteorol. Climatol., 52, 2278−2295, https://doi.org/10.1175/JAMC-D-12-0185.1.
Green, B. W., and F. Q. Zhang, 2015: Idealized large-eddy simulations of a tropical cyclone-like boundary layer. J. Atmos. Sci., 72, 1743−1764, https://doi.org/10.1175/JAS-D-14-0244.1.
Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, https://doi.org/10.1029/2007JD009429.
Hence, D. A., and R. A. Houze Jr., 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 2644−2661, https://doi.org/10.1175/JAS-D-11-0323.1.
Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635−643, https://doi.org/10.1002/qj.413.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Houze, R. A., Jr., 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235−1239, https://doi.org/10.1126/science.1135650.
Kain, J. S., and J. M. Fritch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society, 165−170, https://doi.org/10.1007/978-1-935704-13-3_16.
LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 2444−2457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.
Li, Q. Q., and Y. Q. Wang, 2012a: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782−2805, https://doi.org/10.1175/MWR-D-11-00237.1.
Li, Q. Q., and Y. Q. Wang, 2012b: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 997−1020, https://doi.org/10.1175/2011JAS3690.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2015: Impacts of evaporation of rainwater on tropical cyclone structure and intensity−A revisit. J. Atmos. Sci., 72, 1323−1345, https://doi.org/10.1175/JAS-D-14-0224.1.
Lorsolo, S., J. A. Zhang, F. Marks Jr., and J. Gamache, 2010: Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements. Mon. Wea. Rev., 138, 3656−3670, https://doi.org/10.1175/2010MWR3183.1.
Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237−1259, https://doi.org/10.1175/2007MWR2073.1.
Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon. Wea. Rev., 138, 4212−4228, https://doi.org/10.1175/2010MWR3286.1.
Moon, Y., and D. S. Nolan, 2015a: Spiral rainbands in a numerical simulation of hurricane bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164−190, https://doi.org/10.1175/JAS-D-14-0058.1.
Moon, Y., and D. S. Nolan, 2015b: Spiral rainbands in a numerical simulation of hurricane bill (2009). Part II: Propagation of inner rainbands. J. Atmos. Sci., 72, 191−215, https://doi.org/10.1175/JAS-D-14-0056.1.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol., 107, 401−427, https://doi.org/10.1023/A:1022146015946.
Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891−917, https://doi.org/10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.
Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918−938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.
Rotunno, R., and G. H. Bryan, 2014: Effects of resolved turbulence in a large eddy simulation of a hurricane, Proc. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc.
Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 1783−1788, https://doi.org/10.1175/2009BAMS2884.1.
Ryan, B. F., G. M. Barnes, and E. J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120, 431−447, https://doi.org/10.1175/1520-0493(1992)120<0431:AWRIAD>2.0.CO;2.
Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 3502−3517, https://doi.org/10.1175/1520-0493(1995)123<3502:SWMIHA>2.0.CO;2.
Sawada, M., and T. Iwasaki, 2010: Impacts of evaporation from raindrops on tropical cyclones. Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci., 67, 84−96, https://doi.org/10.1175/2009JAS3195.1.
Stern, D., and G. H. Bryan, 2014: The structure and dynamics of coherent vortices in the eyewall boundary layer of tropical cyclones. Proc. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc.
Tang, X. W., W. C. Lee, and M. Bell, 2018: Subrainband structure and dynamic characteristics in the principal rainband of Typhoon Hagupit (2008). Mon. Wea. Rev., 146(1), 157−173, https://doi.org/10.1175/MWR-D-17-0178.1.
Wang, Y. Q., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313−3332, https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.
Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189−3211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.
Wu, L. G., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65−86, https://doi.org/10.1175/JAS3597.1.
Wu, L. G., Q. Y. Liu, and Y. B. Li, 2018: Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proc. Natl. Acad. Sci. USA, 115, 8307−8310, https://doi.org/10.1073/pnas.1807217115.
Wu, L. G., Q. Y. Liu, and Y. B. Li, 2019: Tornado-scale vortices in the tropical cyclone boundary layer: Numerical simulation with the WRF-LES framework. Atmospheric Chemistry and Physics, 19, 2477−2487, https://doi.org/10.5194/acp-19-2477-2019.
Xiao, J., Z. M. Tan, and K. C. Chow, 2019: Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008). Meteorology and Atmospheric Physics, 131, 713−737, https://doi.org/10.1007/s00703-018-0599-0.
Zagrodnik, J. P., and H. Y. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789−2809, https://doi.org/10.1175/JAS-D-13-0314.1.
Zheng, Y., L. G. Wu, H. K. Zhao, X. Y. Zhou, and Q. Y. Liu, 2020: Simulation of extreme updrafts in the tropical cyclone eyewall. Adv. Atmos. Sci., 37(7), 781−792, https://doi.org/10.1007/s00376-020-9197-4.
Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.
Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2018: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmospheric Chemistry and Physics Discussions, 1−33, https://doi.org/10.5194/acp-2018-610.