Allabakash, S., P. Yasodha, L. Bianco, S. Venkatramana Reddy, P. Srinivasulu, and S. Lim, 2017: Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station. J. Geophys. Res., 122, 9211−9232, https://doi.org/10.1002/2017JD027615.
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283−290, https://doi.org/10.1175/1520-0477-38.5.283.
Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884−891, https://doi.org/10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.
Chen, G. T.-J., C.-C. Wang, and L.-F. Lin, 2006: A diagnostic study of a retreating Mei-Yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874−896, https://doi.org/10.1175/MWR3099.1.
Chen, G. X., 2020: Diurnal cycle of the Asian summer monsoon: Air pump of the second kind. J. Climate, 33, 1747−1775, https://doi.org/10.1175/JCLI-D-19-0210.1.
Chen, G. X., T. Iwasaki, H. L. Qin, and W. M. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 5517−5537, https://doi.org/10.1175/JCLI-D-14-00005.1.
Chen, G. X., W. M. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: 2. Impact of the diurnal monsoon variability. J. Geophys. Res., 114, D21105, https://doi.org/10.1029/2009JD012181.
Chen, G. X., W. M. Sha, T. Iwasaki, and K. Ueno, 2012: Diurnal variation of rainfall in the Yangtze River Valley during the spring-summer transition from TRMM measurements. J. Geophys. Res., 117, D06106, https://doi.org/10.1029/2011JD017056.
Chen, G. X., W. M. Sha, T. Iwasaki, and Z. P. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145, 3365−3389, https://doi.org/10.1175/MWR-D-16-0423.1.
Chen, G. X., Y. Du, and Z. P. Wen, 2021: Seasonal, interannual, and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. J. Climate, 34, 4403−4421, https://doi.org/10.1175/JCLI-D-20-0882.1.
Chou, L. C., C.-P. Chang, and R. T. Williams, 1990: A numerical simulation of the Mei-Yu front and the associated low level jet. Mon. Wea. Rev., 118, 1408−1428, https://doi.org/10.1175/1520-0493(1990)118<1408:ANSOTM>2.0.CO;2.
Ding, Y. H., 1994: Monsoons over China. Kluwer Academic Publishers, 419 pp.
Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674−3683, https://doi.org/10.1175/JAS-D-14-0060.1.
Du, Y., and G. X. Chen, 2019: Climatology of low-level jets and their impact on rainfall over southern China during the early-summer rainy season. J. Climate, 32, 8813−8833, https://doi.org/10.1175/JCLI-D-19-0306.1.
Du, Y., Q. H. Zhang, Y.-L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 5747−5767, https://doi.org/10.1175/JCLI-D-13-00571.1.
Du, Y., Y.-L. Chen, and Q. H. Zhang, 2015: Numerical simulations of the Boundary Layer Jet off the southeastern coast of China. Mon. Wea. Rev., 143, 1212−1231, https://doi.org/10.1175/MWR-D-14-00348.1.
Du, Y., Y. Shen, and G. X. Chen, 2022: Influence of coastal marine boundary layer jets on rainfall in South China. Adv. Atmos. Sci., 39, 782−801, https://doi.org/10.1007/s00376-021-1195-7.
Fu, P. L., K. F. Zhu, K. Zhao, B. W. Zhou, and M. Xue, 2019: Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci., 36, 15−28, https://doi.org/10.1007/s00376-018-8095-5.
Gao, C. C., Y. Y. Li, and H. W. Chen, 2019: Diurnal variations of different cloud types and the relationship between the diurnal variations of clouds and precipitation in central and east China. Atmosphere, 10, 304, https://doi.org/10.3390/atmos10060304.
He, M.-Y., H.-B. Liu, B. Wang, and D.-L. Zhang, 2016: A modeling study of a low-level jet along the Yun-Gui Plateau in south China. J. Appl. Meteorol. Climatol, 55, 41−60, https://doi.org/10.1175/JAMC-D-15-0067.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200−205, https://doi.org/10.3402/tellusa.v19i2.9766.
Johnson, N. C., 2013: How many ENSO flavors can we distinguish. J. Climate, 26, 4816−4827, https://doi.org/10.1175/JCLI-D-12-00649.1.
Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 6354−6371, https://doi.org/10.1175/2008JCLI2380.1.
Jung, M.-I., S.-W. Son, H.-C. Kim, S.-W. Kim, R. J. Park, and D. L. Chen, 2019: Contrasting synoptic weather patterns between non-dust high particulate matter events and Asian dust events in Seoul, South Korea. Atmos. Environ., 214, 116864, https://doi.org/10.1016/j.atmosenv.2019.116864.
Kohonen, T., 1998: The self-organizing map. Neurocomputing, 21, 1−6, https://doi.org/10.1016/S0925-2312(98)00030-7.
Kohonen, T., 2013: Essentials of the self-organizing map. Neural Networks, 37, 52−65, https://doi.org/10.1016/j.neunet.2012.09.018.
Krishnamurti, T. N., J. Molinari, and H. L. Pan, 1976: Numerical simulation of the somali jet. J. Atmos. Sci., 33, 2350−2362, https://doi.org/10.1175/1520-0469(1976)033<2350:NSOTSJ>2.0.CO;2.
Li, M. X., Y. L. Luo, and M. Min, 2022: Characteristics of pre-summer daytime cloud regimes over coastal South China from the Himawari-8 satellite. Adv. Atmos. Sci., 39, 2008−2023, https://doi.org/10.1007/s00376-021-1148-1.
Li, X. Q., and Y. Du, 2021: Statistical relationships between two types of heavy rainfall and low-level jets in South China. J. Climate, 34, 8549−8566, https://doi.org/10.1175/JCLI-D-21-0121.1.
Li, Z. H., Y. L. Luo, Y. Du, and J. C. L. Chan, 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan, 98, 213−233, https://doi.org/10.2151/jmsj.2020-012.
Liu, B. Q., G. X. Chen, W. X. Zeng, L. Q. Bai, and H. L. Qin, 2022: Diurnal variations of southerly monsoon surge and their impacts on East Asian summer rainfall. J. Climate, 35, 159−177, https://doi.org/10.1175/JCLI-D-21-0372.1.
Liu, H. B., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River basin. J. Geophys. Res., 113, D22101, https://doi.org/10.1029/2008JD010072.
Liu, H. B., M. Y. He, B. Wang, and Q. H. Zhang, 2014: Advances in low-level jet research and future prospects. Journal of Meteorological Research, 28, 57−75, https://doi.org/10.1007/s13351-014-3166-8.
Liu, W. B., L. Wang, D. L. Chen, K. Tu, C. Q. Ruan, and Z. Y. Hu, 2016: Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dyn., 46, 3481−3497, https://doi.org/10.1007/s00382-015-2782-z.
Liu, Y. G., and R. H. Weisberg, 2011: Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation. J. Geophys. Res., 116, C09013, https://doi.org/10.1029/2010JC006837.
Liu, Y. G., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.
Luo, Y. H., and Y. Du, 2023: The roles of low-level jets in “21·7” Henan extremely persistent heavy rainfall event. Adv. Atmos. Sci., 40, 350−373, https://doi.org/10.1007/s00376-022-2026-1.
Luo, Y. L., and Coauthors, 2017: The southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999−1013, https://doi.org/10.1175/BAMS-D-15-00235.1.
Nigro, M. A., and J. J. Cassano, 2014: Identification of surface wind patterns over the Ross Ice Shelf, Antarctica, using self-organizing map. Mon. Wea. Rev., 142, 2361−2378, https://doi.org/10.1175/MWR-D-13-00382.1.
Ninomiya, K., 2000: Large- and meso-α-scale characteristics of meiyu/baiu front associated with intense rainfalls in 1−10 July 1991. J. Meteor. Soc. Japan, 78, 141−157, https://doi.org/10.2151/jmsj1965.78.2_141.
Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 3937−3953, https://doi.org/10.1175/JAS-D-17-0059.1.
Park, C., S.-W. Son, J. Kim, E.-C. Chang, J.-H. Kim, E. Jo, D.-H. Cha, and S. Jeong, 2021: Diverse synoptic weather patterns of warm-season heavy rainfall events in south korea. Mon. Wea. Rev., 149, 3875−3893, https://doi.org/10.1175/MWR-D-20-0388.1.
Qian, J.-H., W.-K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 3−27, https://doi.org/10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2.
Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 5041−5064, https://doi.org/10.1175/2010JCLI3514.1.
Rousi, E., C. Anagnostopoulou, K. Tolika, and P. Maheras, 2015: Representing teleconnection patterns over Europe: A comparison of SOM and PCA methods. Atmospheric Research, 152, 123−137, https://doi.org/10.1016/j.atmosres.2013.11.010.
Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the great plains nocturnal low-level jet. J. Atmos. Sci., 73, 3037−3057, https://doi.org/10.1175/JAS-D-15-0307.1.
Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 1698−1711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.
Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the east China plains. Mon. Wea. Rev., 140, 379−397, https://doi.org/10.1175/MWR-D-11-00041.1.
Sun, J. H., Y. C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36, 1299−1307, https://doi.org/10.1007/s00376-019-9021-1.
Sun, S.-Q., and G.-Q. Zhai, 1980: On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms. Scientia Atmospherica Sinica, 4, 327−337, https://doi.org/10.3878/j.issn.1006-9895.1980.04.05. (in Chinese with English abstract
Sun, S. Q., and L. Dell'osso, 1985: Influence of Tibetan Plateau on low level jet in East Asia. Scientia Sinica Series B, 53, 68−81. (in Chinese with English abstract)
Vera, C., and Coauthors, 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 63−77, http://urlib.net/sid.inpe.br/mtc-m15@80/2006/08.02.19.56.
Wang, D. Q., Y. C. Zhang, and A. N. Huang, 2013: Climatic features of the south-westerly low-level jet over southeast China and its association with precipitation over east China. Asia-Pacific Journal of Atmospheric Sciences, 49, 259−270, https://doi.org/10.1007/s13143-013-0025-y.
Wang, Z., K. Gao, and G. Q. Zhai, 2003: A mesoscale numerical simulation of low level jet realted with the southwest vortex. Chinese Journal of Atmospheric Sciences, 27, 75−85, https://doi.org/10.3878/j.issn.1006-9895.2003.01.07. (in Chinese with English abstract
Wu, R. T., and G. X. Chen, 2021: Contrasting cloud regimes and associated rainfall over the South Asian and East Asian monsoon regions. J. Climate, 34, 3663−3681, https://doi.org/10.1175/JCLI-D-20-0992.1.
Wu, R. T., G. X. Chen, and Z. J. Luo, 2023: Strong coupling in diurnal variations of clouds, radiation, winds, and precipitation during the East Asian summer monsoon. J. Climate, 36, 1347−1368, https://doi.org/10.1175/JCLI-D-22-0330.1.
Xia, R. D., Y. L. Luo, D.-L. Zhang, M. X. Li, X. H. Bao, and J. S. Sun, 2021: On the diurnal cycle of heavy rainfall over the Sichuan Basin during 10−18 August 2020. Adv. Atmos. Sci., 38, 2183−2200, https://doi.org/10.1007/s00376-021-1118-7.
Xue, M., X. Luo, K. F. Zhu, Z. Q. Sun, and J. F. Fei, 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res., 123, 5090−5115, https://doi.org/10.1029/2018JD028368.
Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki, 2007: Thermodynamic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu-Baiu front. J. Meteor. Soc. Japan, 85, 663−685, https://doi.org/10.2151/jmsj.85.663.
Yin, J., and A. Porporato, 2020: Radiative effects of daily cycle of cloud frequency in past and future climates. Climate Dyn., 54, 1625−1637, https://doi.org/10.1007/s00382-019-05077-5.
Zeng, W. X., G. X. Chen, Y. Du, and Z. P. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 3981−4004, https://doi.org/10.1175/MWR-D-19-0131.1.
Zeng, W. X., G. X. Chen, L. Q. Bai, Q. Liu, and Z. P. Wen, 2022: Multiscale processes of heavy rainfall over East Asia in summer 2020: Diurnal cycle in response to synoptic disturbances. Mon. Wea. Rev., 150, 1355−1376, https://doi.org/10.1175/MWR-D-21-0308.1.
Zhang, D.-L., S. L. Zhang, and S. J. Weaver, 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteorol. Climatol., 45, 194−209, https://doi.org/10.1175/JAM2313.1.
Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the Mei-Yu season. Adv. Atmos. Sci., 31, 139−153, https://doi.org/10.1007/s00376-013-2052-0.
Zhang, Y. C., J. H. Sun, R. Y. Yang, and R. Y. Ma, 2022: Initiation and evolution of long-lived eastward-propagating mesoscale convective systems over the second-step terrain along Yangtze-Huaihe River Valley. Adv. Atmos. Sci., 39, 763−781, https://doi.org/10.1007/s00376-022-1303-3.
Zhao, P., and X. J. Zhou, 2001: Formation of low-level meso-scale southwest jet during seasonal rainfall. Progress in Natural Science, 11, 272−279.