Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.
Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270.
Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6, 181−185, https://doi.org/10.1038/ngeo1731.
Chen, H. P., J. Q. Sun, and X. L. Chen, 2014: Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International Journal of Climatology, 34, 2730−2748, https://doi.org/10.1002/joc.3871.
Chen, M. Y., W. Shi, P. P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.
Chen, X. D., A. G. Dai, Z. P. Wen, and Y. Y. Song, 2021: Contributions of Arctic Sea-Ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall. Geophys. Res. Lett., 48, e2021GL092748, https://doi.org/10.1029/2021GL092748.
Chen, X. L., and T. J. Zhou, 2018: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., 51, 4403−4419, https://doi.org/10.1007/s00382-017-3871-y.
Chen, Y., and P. M. Zhai, 2013: Persistent extreme precipitation events in China during 1951−2010. Climate Research, 57, 143−155, https://doi.org/10.3354/cr01171.
Chen, Y., and P. M. Zhai, 2017: Revisiting summertime hot extremes in China during 1961−2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 5096−5103, https://doi.org/10.1002/2016GL072281.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367−374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.
Dai, A. G., and T. B. Zhao, 2017: Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519−533, https://doi.org/10.1007/s10584-016-1705-2.
Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527−546, https://doi.org/10.1007/s00382-010-0977-x.
Ding, L. D., T. Li, and Y. Sun, 2021a: Subseasonal and synoptic variabilities of precipitation over the Yangtze River Basin in the summer of 2020. Adv. Atmos. Sci., 38, 2108−2124, https://doi.org/10.1007/s00376-021-1133-8.
Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 1139−1161, https://doi.org/10.1002/joc.1615.
Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology, 29, 1926−1944, https://doi.org/10.1002/joc.1759.
Ding, Y. H., Y. Y. Liu, and Z. Z. Hu, 2021b: The record-breaking mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980−1993, https://doi.org/10.1007/s00376-021-0361-2.
Du, H. B., and Coauthors, 2019: Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett., 46, 6041−6049, https://doi.org/10.1029/2019GL081898.
Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 2068−2074, https://doi.org/10.1126/science.289.5487.2068.
Fang, C. X., Y. Liu, Q. F. Cai, and H. M. Song, 2021: Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño. Adv. Atmos. Sci., 38, 2067−2081, https://doi.org/10.1007/s00376-021-1009-y.
Feng, S., S. Nadarajah, and Q. Hu, 2007: Modeling annual extreme precipitation in China using the generalized extreme value distribution. J. Meteor. Soc. Japan, 85, 599−613, https://doi.org/10.2151/jmsj.85.599.
Field, C. B., V. Barros, T. F. Stocker, and D. H. Qin, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp,
Freychet, N., S. F. B. Tett, A. A. Abatan, A. Schurer, and Z. Feng, 2021: Widespread persistent extreme cold events over South‐East China: Mechanisms, trends, and attribution. J. Geophys. Res., 126, https://doi.org/10.1029/2020JD033447.
Fyfe, J. C., and Coauthors, 2017: Large near-term projected snowpack loss over the western United States. Nature Communications, 8, 14996, https://doi.org/10.1038/ncomms14996.
Guan, Y. H., X. C. Zhang, F. L. Zheng, and B. Wang, 2015: Trends and variability of daily temperature extremes during 1960−2012 in the Yangtze River Basin, China. Global and Planetary Change, 124, 79−94, https://doi.org/10.1016/j.gloplacha.2014.11.008.
Guan, Y. H., F. L. Zheng, X. C. Zhang, and B. Wang, 2017: Trends and variability of daily precipitation and extremes during 1960−2012 in the Yangtze River Basin, China. International Journal of Climatology, 37, 1282−1298, https://doi.org/10.1002/joc.4776.
Guo, Y. Y., R. J. Zhang, Z. P. Wen, J. C. Li, C. Zhang, and Z. J. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Science China Earth Sciences, 64, 1619−1632, https://doi.org/10.1007/s11430-020-9762-0.
Habeeb, D., J. Vargo, and B. Stone Jr., 2015: Rising heat wave trends in large US cities. Natural Hazards, 76, 1651−1665, https://doi.org/10.1007/s11069-014-1563-z.
He, B.-R., and P.-M. Zhai, 2018: Changes in persistent and non-persistent extreme precipitation in China from 1961 to 2016. Advances in Climate Change Research, 9, 177−184, https://doi.org/10.1016/j.accre.2018.08.002.
He, S. C., J. Yang, Q. Bao, L. Wang, and B. Wang, 2019: Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China. J. Climate, 32, 195−212, https://doi.org/10.1175/JCLI-D-18-0104.1.
Jones, P. D., S. C. B. Raper, R. S. Bradley, H. F. Diaz, P. M. Kellyo, and T. M. L. Wigley, 1986: Northern hemisphere surface air temperature variations: 1851−1984. J. Climate Appl. Meteorol., 25, 161−179, https://doi.org/10.1175/1520-0450(1986)025<0161:NHSATV>2.0.CO;2.
Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231−242, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.
Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345−357, https://doi.org/10.1007/s10584-013-0705-8.
Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501−515, https://doi.org/10.1007/s10584-015-1434-y.
Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 1, 511−514, https://doi.org/10.1038/ngeo262.
Li, C. F., W. Chen, X. W. Hong, and R. Y. Lu, 2017: Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August Adv. Atmos. Sci., 34, 1290−1300, https://doi.org/10.1007/s00376-017-7003-8.
Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner, 2021a: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. Journal of Climate, 34, 3441−3460.
Li, C. F., R. Y. Lu, N. Dunstone, A. A. Scaife, P. E. Bett, and F. Zheng, 2021b: The seasonal prediction of the exceptional Yangtze River rainfall in summer 2020. Adv. Atmos. Sci., 38, 2055−2066, https://doi.org/10.1007/s00376-021-1092-0.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Liu, Y. Y. and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteorological Monthly, 46, 1393−1404, https://doi.org/10.7519/j.issn.1000-0526.2020.11.001. (in Chinese with English abstract
Lu, R., 2000: Anomalies in the Tropics Associated with the Heavy Rainfall in East Asia during the Summer of 1998. Advances in Atmospheric Sciences, 17, 205−220.
Luo, Y. L., W. M. Qian, R. H. Zhang, and D.-L. Zhang, 2013: Gridded hourly precipitation analysis from high-density rain gauge network over the Yangtze–Huai Rivers Basin during the 2007 mei-yu season and comparison with CMORPH. Journal of Hydrometeorology, 14, 1243−1258, https://doi.org/10.1175/JHM-D-12-0133.1.
Luo, Z. Q., J. Yang, M. N. Gao, and D. L. Chen, 2020: Extreme hot days over three global mega-regions: Historical fidelity and future projection. Atmospheric Science Letters, 21, e1003, https://doi.org/10.1002/asl.1003.
Meinshausen, M., and Coauthors, 2019: The SSP greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development,
Nanding, N., and Coauthors, 2020: Anthropogenic Influences on 2019 July Precipitation Extremes Over the Mid–Lower Reaches of the Yangtze River. Frontiers in Environmental Science, 8.
O’Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Pan, X., T. Li, Y. Sun, and Z. W. Zhu, 2021: Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Adv. Atmos. Sci., 38, 1994−2009, https://doi.org/10.1007/s00376-021-0433-3.
Papalexiou, S. M., and A. Montanari, 2019: Global and regional increase of precipitation extremes under global warming. Water Resour. Res., 55, 4901−4914, https://doi.org/10.1029/2018WR024067.
Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 7, 12256, https://doi.org/10.1038/s41598-017-12520-2.
Pfleiderer, P., C.-F. Schleussner, K. Kornhuber, and D. Coumou, 2019: Summer weather becomes more persistent in a 2°C world. Nature Climate Change, 9, 666−671, https://doi.org/10.1038/s41558-019-0555-0.
Qiao, S. B., and Coauthors, 2021: The longest 2020 meiyu season over the past 60 years: Subseasonal perspective and its predictions. Geophys. Res. Lett., 48, e2021GL093596, https://doi.org/10.1029/2021GL093596.
Ren, L. W., and Coauthors, 2020: Anthropogenic influences on the persistent night-time heat wave in Summer 2018 over Northeast China. Bull. Amer. Meteor. Soc., 101, S83−S88, https://doi.org/10.1175/BAMS-D-19-0152.1.
Ren, Z. H., Y. Yu, F. L. Zou, and Y. Xu, 2012: Quality detection of surface historical basic meteorological data. Journal of Applied Meteorological Science, 23, 739−747, https://doi.org/10.3969/j.issn.1001-7313.2012.06.011. (in Chinese with English abstract
Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 1716−1733, https://doi.org/10.1002/jgrd.50203.
Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 2473−2493, https://doi.org/10.1002/jgrd.50188.
Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.
Su, B. D., T. Jiang, and W. B. Jin, 2006: Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol., 83, 139−151, https://doi.org/10.1007/s00704-005-0139-y.
Sun, J. Q., and J. Ao, 2013: Changes in precipitation and extreme precipitation in a warming environment in China. Chinese Science Bulletin, 58, 1395−1401, https://doi.org/10.1007/s11434-012-5542-z.
Sun, J. Q., H. J. Wang, W. Yuan, and H. P. Chen, 2010: Spatial-temporal features of intense snowfall events in China and their possible change. J. Geophys. Res., 115, D16110, https://doi.org/10.1029/2009JD013541.
Sun, Y., X. B. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin, and G. Y. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4, 1082−1085, https://doi.org/10.1038/nclimate2410.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Tang, S. L., J.-J. Luo, J. Y. He, J. Y. Wu, Y. Zhou, and W. S. Ying, 2021: Toward understanding the extreme floods over Yangtze River Valley in June−July 2020: Role of Tropical Oceans. Adv. Atmos. Sci., 38, 2023−2039, https://doi.org/10.1007/s00376-021-1036-8.
Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Research, 47, 123−138, https://doi.org/10.3354/cr00953.
Trenberth, K. E., A. G. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nature Climate Change, 4, 17−22, https://doi.org/10.1038/nclimate2067.
von Salzen, K., and Coauthors, 2013: The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: Representation of physical processes. Atmosphere-Ocean, 51, 104−125, https://doi.org/10.1080/07055900.2012.755610.
Wang, B., R. G. Wu, and X. H. Fu, 2000a: Pacific–East Asian teleconnection: How Does ENSO affect East Asian climate. J. Climate, 13, 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Wang, C., K. Wu, L. G. Wu, H. K. Zhao, and J. Cao, 2021a: What caused the unprecedented absence of Western North Pacific tropical cyclones in July 2020. Geophys. Res. Lett., 48, e2020GL092282, https://doi.org/10.1029/2020GL092282.
Wang, J., Y. Chen, S. F. B. Tett, Z. W. Yan, P. M. Zhai, J. M. Feng, and J. J. Xia, 2020b: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nature Communications, 11, 528, https://doi.org/10.1038/s41467-019-14233-8.
Wang, S. S., J. P. Huang, and X. Yuan, 2021b: Attribution of 2019 extreme spring–early summer hot drought over Yunnan in Southwestern China. Bull. Amer. Meteor. Soc., 102, S91−S96, https://doi.org/10.1175/BAMS-D-20-0121.1.
Wartenburger, R., M. Hirschi, M. G. Donat, P. Greve, A. J. Pitman, and S. I. Seneviratne, 2017: Changes in regional climate extremes as a function of global mean temperature: An interactive plotting framework. Geoscientific Model Development, 10, 3609−3634, https://doi.org/10.5194/gmd-10-3609-2017.
Wu, J., B.-T. Zhou, and Y. Xu, 2015: Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chinese Journal of Geophysics, 58, 461−473, https://doi.org/10.1002/cjg2.20187.
Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921−930, https://doi.org/10.1038/nclimate2689.
Ye, D. X., J. F. Yin, Z. H. Chen, Y. F. Zheng, and R. J. Wu, 2014: Spatial and temporal variations of heat waves in China from 1961 to 2010. Advances in Climate Change Research, 5, 66−73, https://doi.org/10.3724/SP.J.1248.2014.066.
Ye, Y. B., and C. Qian, 2021: Conditional attribution of climate change and atmospheric circulation contributing to the record-breaking precipitation and temperature event of summer 2020 in southern China. Environmental Research Letters, 16, 044058, https://doi.org/10.1088/1748-9326/abeeaf.
Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096−1108, https://doi.org/10.1175/JCLI-3318.1.
Zhang, Q., C.-Y. Xu, Z. X. Zhang, Y. D. Chen, C.-L. Liu, and H. Lin, 2008: Spatial and temporal variability of precipitation maxima during 1960−2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol., 353, 215−227, https://doi.org/10.1016/j.jhydrol.2007.11.023.
Zhang, W. J., Z. C. Huang, F. Jiang, M. F. Stuecker, G. S. Chen, and F.-F. Jin, 2021: Exceptionally persistent madden‐julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.
Zhang, W. X., and T. J. Zhou, 2020: Increasing impacts from extreme precipitation on population over China with global warming. Science Bulletin, 65, 243−252, https://doi.org/10.1016/j.scib.2019.12.002.
Zhang, W. X., and Coauthors, 2020: Anthropogenic influence on 2018 summer persistent heavy rainfall in central Western China. Bull. Amer. Meteor. Soc., 101, S65−S70, https://doi.org/10.1175/BAMS-D-19-0147.1.
Zhang, X.-L., S.-Y. Tao, and J. Wei, 2006: An analysis on the Basin-wide catastrophic floods in the Yangtze River during the 20th Century. Climatic and Environmental Research, 11, 669−682, https://doi.org/10.3969/j.issn.1006-9585.2006.06.001. (in Chinese with English abstract
Zhao, P., S. Yang, and R. C. Yu, 2010: Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 1544−1562, https://doi.org/10.1175/2009JCLI2660.1.
Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Science China Earth Sciences, 64, 1607−1618, https://doi.org/10.1007/s11430-020-9758-9.
Zhou, B. T., Q. H. Wen, Y. Xu, L. C. Song, and X. B. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 6591−6611, https://doi.org/10.1175/JCLI-D-13-00761.1.
Zhou, C. L., K. C. Wang, D. Qi, and J. G. Tan, 2019: Attribution of a record-breaking heatwave event in summer 2017 over the Yangtze River delta. Bull. Amer. Meteor. Soc., 100, S97−S103, https://doi.org/10.1175/BAMS-D-18-0134.1.
Zhou, T. J., L. W. Ren, and W. X. Zhang, 2021a: Anthropogenic influence on extreme Meiyu rainfall in 2020 and its future risk. Science China Earth Sciences, 64, 1633−1644, https://doi.org/10.1007/s11430-020-9771-8.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021b: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.
Zhu, C. W., B. Wang, W. H. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 1119−1132, https://doi.org/10.1007/s00376-020-9289-1.