Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Anderegg, W. R. L., and Coauthors, 2018: Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561, 538−541, https://doi.org/10.1038/s41586-018-0539-7.
Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444−1449, https://doi.org/10.1126/science.1155121.
Bowring, S. P. K., L. M. Miller, L. Ganzeveld, and A. Kleidon, 2014: Applying the concept of “energy return on investment” to desert greening of the Sahara/Sahel using a global climate model. Earth System Dynamics, 5, 43−53, https://doi.org/10.5194/esd-5-43-2014.
Chou, C., D. Ryu, M.-H. Lo, H.-W. Wey, and H. M. Malano, 2018: Irrigation-induced land-atmosphere feedbacks and their impacts on Indian summer monsoon. J. Climate, 31, 8785−8801, https://doi.org/10.1175/JCLI-D-17-0762.1.
Cuxart, J., L. Conangla, and M. A. Jiménez, 2015: Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J. Geophys. Res.: Atmos., 120, 1008−1022, https://doi.org/10.1002/2014JD022296.
Diffenbaugh, N. S., 2009: Influence of modern land cover on the climate of the United States. Climate Dyn., 33, 945−958, https://doi.org/10.1007/s00382-009-0566-z.
Ding, M. J., Y. L. Zhang, L. S. Liu, W. Zhang, Z. F. Wang, and W. Q. Bai, 2007: The relationship between NDVI and precipitation on the Tibetan Plateau. Journal of Geographical Sciences, 17, 259−268, https://doi.org/10.1007/s11442-007-0259-7.
Dong, W. H., and Coauthors, 2018: Regional disparities in warm season rainfall changes over arid eastern-central Asia. Scientific Reports, 8, 13051, https://doi.org/10.1038/S41598-018-31246-3.
Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419−5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Han, S. J., Q. H. Tang, D. Xu, S. L. Wang, and Z. Y. Yang, 2017: Observed near-surface atmospheric moisture content changes affected by irrigation development in Xinjiang, Northwest China. Theor. Appl. Climatol., 130, 511−521, https://doi.org/10.1007/s00704-016-1899-2.
Harrison, S. P., P. J. Bartlein, K. Izumi, G. Li, J. Annan, J. Hargreaves, P. Braconnot, and M. Kageyama, 2015: Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change, 5, 735−743, https://doi.org/10.1038/nclimate2649.
Heald, C. L., and D. V. Spracklen, 2015: Land use change impacts on air quality and climate. Chemical Reviews, 115, 4476−4496, https://doi.org/10.1021/cr500446g.
Hu, Y., X.-Z. Zhang, R. Mao, D.-Y. Gong, H.-B. Liu, and J. Yang, 2015: Modeled responses of summer climate to realistic land use/cover changes from the 1980s to the 2000s over eastern China. J. Geophys. Res.: Atmos., 120, 167−179, https://doi.org/10.1002/2014JD022288.
Hu, Z. H., Z. F. Xu, Z. G. Ma, R. Mahmood, and Z. L. Yang, 2019: Potential surface hydrologic responses to increases in greenhouse gas concentrations and land use and land cover changes. International Journal of Climatology, 39, 814−827, https://doi.org/10.1002/joc.5844.
Huang, X. Y., and P. A. Ullrich, 2016: Irrigation impacts on California's climate with the variable-resolution CESM. Journal of Advances in Modeling Earth Systems, 8, 1151−1163, https://doi.org/10.1002/2016MS000656.
Hurrell, J. W., and Coauthors, 2013: The community earth system model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339−1360, https://doi.org/10.1175/BAMS-D-12-00121.1.
Keller, D. P., E. Y. Feng, and A. Oschlies, 2014: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nature Communications, 5, 3304, https://doi.org/10.1038/ncomms4304.
Kemena, T. P., K. Matthes, T. Martin, S. Wahl, and A. Oschlies, 2018: Atmospheric feedbacks in North Africa from an irrigated, afforested Sahara. Climate Dyn., 50, 4561−4581, https://doi.org/10.1007/s00382-017-3890-8.
Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change, 8, 434−440, https://doi.org/10.1038/s41558-018-0144-7.
Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138−1140, https://doi.org/10.1126/science.1100217.
Lamchin, M., W. K. Lee, S. W. Jeon, S. W. Wang, C. H. Lim, C. Song, and M. Sung, 2018: Long-term trend of and correlation between vegetation greenness and climate variables in Asia based on satellite data. MethodsX, 5, 803−807, https://doi.org/10.1016/j.mex.2018.07.006.
Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci., 112, G01023, https://doi.org/10.1029/2006JG000168.
Lawrence, D., and K. Vandecar, 2015: Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5, 27−36, https://doi.org/10.1038/nclimate2430.
Li, Z., Y. N. Chen, W. H. Li, H. J. Deng, and G. H. Fang, 2015: Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res.: Atmos., 120, 12, https://doi.org/10.1002/2015JD023618.
Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903−1925, https://doi.org/10.5194/gmd-10-1903-2017.
Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, 453−469, https://doi.org/10.5194/hess-15-453-2011.
Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). NCAR/TN-478+STR.
Ornstein, L., I. Aleinov, and D. Rind, 2009: Irrigated afforestation of the Sahara and Australian Outback to end global warming. Climatic Change, 97, 409−437, https://doi.org/10.1007/s10584-009-9626-y.
Qiu, B. W., W. J. Li, M. Zhong, Z. H. Tang, and C. C. Chen, 2014: Spatiotemporal analysis of vegetation variability and its relationship with climate change in China. Geo-spatial Information Science, 17, 170−180, https://doi.org/10.1080/10095020.2014.959095.
Ran, L. S., X. X. Lu, and J. C. Xu, 2013: Effects of vegetation restoration on soil conservation and sediment loads in China: A critical review. Critical Reviews in Environmental Science and Technology, 43, 1384−1415, https://doi.org/10.1080/10643389.2011.644225.
Shan, N., Z. J. Shi, X. H. Yang, H. Guo, X. Zhang, and Z. Y. Zhang, 2018: Oasis irrigation-induced hydro-climatic effects: A case study in the hyper-arid region of Northwest China. Atmosphere, 9, 142, https://doi.org/10.3390/atmos9040142.
Shi, Z. G., Y. Y. Sha, X. D. Liu, X. N. Xie, and X. Z. Li, 2019: Effect of marginal topography around the Tibetan Plateau on the evolution of central Asian arid climate: Yunnan-Guizhou and Mongolian Plateaux as examples. Climate Dyn., 53, 4433−4445, https://doi.org/10.1007/s00382-019-04796-z.
Smith, L. J., and M. S. Torn, 2013: Ecological limits to terrestrial biological carbon dioxide removal. Climatic Change, 118, 89−103, https://doi.org/10.1007/s10584-012-0682-3.
Smith, P., and Coauthors, 2015: Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6, 42−50, https://doi.org/10.1038/NCLIMATE2870.
Spracklen, D. V., and L. J. G. R. L. Garcia-Carreras, 2015: The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett., 42, 9546−9552, https://doi.org/10.1002/2015GL066063.
Spracklen, D. V., J. C. A. Baker, L. Garcia-Carreras, and J. H. Marsham, 2018: The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43, 193−218, https://doi.org/10.1146/annurev-environ-102017-030136.
Tanaka, T. Y., and M. Chiba, 2006: A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change, 52, 88−104, https://doi.org/10.1016/j.gloplacha.2006.02.002.
Wang, F. Y., M. Notaro, Z. Y. Liu, and G. S. Chen, 2014: Observed local and remote influences of vegetation on the atmosphere across North America using a model-validated statistical technique that first excludes oceanic forcings. J. Climate, 27, 362−382, https://doi.org/10.1175/JCLI-D-13-00080.1.
Wang, S. J., M. J. Zhang, Y. J. Che, F. L. Chen, and F. Qiang, 2016: Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resour. Res., 52, 3246−3257, https://doi.org/10.1002/2015WR018135.
Wang, S. S., J. L. Huang, D. Q. Yang, G. Pavlic, and J. H. Li, 2015: Long-term water budget imbalances and error sources for cold region drainage basins. Hydrological Processes, 29, 2125−2136, https://doi.org/10.1002/hyp.10343.
Yao, J. Q., Y. Zhao, and X. J. Yu, 2018: Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961−2015. PeerJ, 6, e4926, https://doi.org/10.7717/peerj.4926.
Yu, M., G. L. Wang, and J. S. Pal, 2016: Effects of vegetation feedback on future climate change over West Africa. Climate Dyn., 46, 3669−3688, https://doi.org/10.1007/s00382-015-2795-7.
Yu, Y., M. Notaro, F. Y. Wang, J. F. Mao, X. Y. Shi, and Y. X. Wei, 2017: Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nature Communications, 8, 1873, https://doi.org/10.1038/s41467-017-02021-1.
Yu, Y., M. Notaro, F. Y. Wang, J. F. Mao, X. Y. Shi, and Y. X. Wei, 2018: Validation of a statistical methodology for extracting vegetation feedbacks: Focus on North African ecosystems in the community earth system model. J. Climate, 31, 1565−1586, https://doi.org/10.1175/JCLI-D-17-0220.1.
Yu, Y., O. V. Kalashnikova, M. J. Garay, and M. Notaro, 2019: Climatology of Asian dust activation and transport potential based on MISR satellite observations and trajectory analysis. Atmospheric Chemistry and Physics, 19, 363−378, https://doi.org/10.5194/acp-19-363-2019.
Zeng, Z. Z., and Coauthors, 2018a: Global terrestrial stilling: Does Earth’s greening play a role? Environmental Research Letters, 13, 124013, https://doi.org/10.1088/1748-9326/AAEA84.
Zeng, Z. Z., and Coauthors, 2018b: Impact of earth greening on the terrestrial water cycle. J. Climate, 31, 2633−2650, https://doi.org/10.1175/JCLI-D-17-0236.1.
Zhang, L., W. R. Dawes, and G. R. Walker, 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res., 37, 701−708, https://doi.org/10.1029/2000WR900325.
Zhang, Q., P. J. Shi, V. P. Singh, K. K. Fan, and J. J. Huang, 2017: Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China. International Journal of Climatology, 37, 3895−3909, https://doi.org/10.1002/joc.4964.
Zhong, R. S., X. G. Dong, and Y. J. Ma, 2009: Sustainable water saving: New concept of modern agricultural water saving, starting from development of Xinjiang's agricultural irrigation over the last 50 years. Irrigation and Drainage, 58, 383−392, https://doi.org/10.1002/ird.414.