Atkinson, G. D., and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the Western North Pacific. Mon. Wea. Rev., 105, 421−427, https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2.
Bao, J. W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 3278−3299, https://doi.org/10.1175/MWR-D-11-00332.1.
Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941−3961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.
Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 1273−1292, https://doi.org/10.1175/JAS-D-16-0231.1.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1−15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteorol., 131, 321−344, https://doi.org/10.1007/s10546-009-9379-1.
Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 4321−4332, https://doi.org/10.1175/JAS-D-13-0378.1.
Gopalakrishnan, S. G., F. Marks Jr, J. A. Zhang, X. J. Zhang, J. W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524−541, https://doi.org/10.1175/JAS-D-11-0340.1.
Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685−690, https://doi.org/10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.
Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294−3315, https://doi.org/10.1175/2009MWR2679.1.
Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322−2339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia- Pacific Journal of Atmospheric Sciences, 42, 129−151.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Ito, J., T. Oizumi, and H. Niino, 2017: Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones. Scientific Reports, 7, 3798, https://doi.org/10.1038/s41598-017-03848-w.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kain, J. S., and J. Michael Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Springer, 165−170, https://doi.org/10.1007/978-1-935704-13-3_16.
Kanada, S., A. Wada, M. Nakano, and T. Kato, 2012: Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. J. Geophys. Res., 117, D03107, https://doi.org/10.1029/2011JD016582.
Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 1427−1445, https://doi.org/10.1175/MWR-D-11-00217.1.
Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 25−59, https://doi.org/10.1175/1520-0469(1975)032<0025:BAOATC>2.0.CO;2.
Li, W., Z. Hu, Z. Pei, S. Li, and P. W. Chan, 2020: A discussion on influences of turbulent diffusivity and surface drag parameterizations using a linear model of the tropical cyclone boundary layer wind field. Atmospheric Research, 237, 104847, https://doi.org/10.1016/j.atmosres.2020.104847.
Ma, Z. H., J. F. Fei, X. G. Huang, and X. P. Cheng, 2014: Impacts of the lowest model level height on tropical cyclone intensity and structure. Adv. Atmos. Sci., 31, 421−434, https://doi.org/10.1007/s00376-013-3044-9.
Ma, Z. H., J. F. Fei, X. G. Huang, and X. P. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120−140, https://doi.org/10.1175/JAS-D-14-0199.1.
Ma, Z. H., J. F. Fei, X. G. Huang, and X. P. Cheng, 2018: Sensitivity of the simulated tropical cyclone intensification to the boundary-layer height based on a K-profile boundary-layer parameterization Scheme. Journal of Advances in Modeling Earth Systems, 10, 2912−2932, https://doi.org/10.1029/2018MS001459.
Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1−20, https://doi.org/10.3402/tellusa.v12i1.9351.
Ming, J., and J. A. Zhang, 2016: Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci., 33, 58−72, https://doi.org/10.1007/s00376-015-4202-z.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663−16682, https://doi.org/10.1029/97JD00237.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol., 107, 401−427, https://doi.org/10.1023/A:1022146015946.
Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of hurricane Isabel (2003). part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675−3698, https://doi.org/10.1175/2009MWR2786.1.
Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteorol., 139, 261−281, https://doi.org/10.1007/s10546-010-9583-z.
Shin, H. H., and J. Dudhia, 2016: Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer. Mon. Wea. Rev., 144, 1161−1177, https://doi.org/10.1175/MWR-D-15-0208.1.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. No. NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH.
Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 1671−1685, https://doi.org/10.1002/qj.687.
Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteorol., 37, 129−148, https://doi.org/10.1007/BF00122760.
Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes–a review. Meteorol. Atmos. Phys., 87, 257−278, https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250−1273, https://doi.org/10.1175/2008JAS2737.1.
Wu, W., J. L. Chen, and R. H. Huang, 2013: Water budgets of tropical cyclones: Three case studies. Adv. Atmos. Sci., 30, 468−484, https://doi.org/10.1007/s00376-012-2050-7.
Xu, J., and Y. Q. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831−1852, https://doi.org/10.1175/2010JAS3387.1.
Yang, M. J., S. A. Braun, and D. S. Chen, 2011: Water budget of typhoon nari (2001). Mon. Wea. Rev., 139, 3809−3828, https://doi.org/10.1175/MWR-D-10-05090.1.
Zhang, D. L., and X. X. Wang, 2003: Dependence of Hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711−725, https://doi.org/10.1007/BF02915397.
Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 3223−3236, https://doi.org/10.1175/JAS-D-11-0348.1.
Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 1447−1462, https://doi.org/10.1175/2010MWR3435.1.
Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136−3155, https://doi.org/10.1175/MWR-D-14-00339.1.
Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 1413−1426, https://doi.org/10.1175/MWR-D-16-0129.1.
Zhang, J. A., E. A. Kalina, M. K. Biswas, R. F. Rogers, P. Zhu, and F. D. Marks, 2020: A review and evaluation of planetary boundary layer parameterizations in hurricane weather research and forecasting model using idealized simulations and observations. Atmosphere, 11, 1091, https://doi.org/10.3390/atmos11101091.
Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.
Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2019: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmospheric Chemistry and Physics, 19, 14289−14310, https://doi.org/10.5194/acp-19-14289-2019.