Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration—Guidelines for computing crop water requirements. FAO irrigation and drainage paper No.56, Food and Agriculture Organization (FAO), Rome.
Arora, V., 2002: Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Reviews of Geophysics, 40, 1006, https://doi.org/10.1029/2001RG000103.
Bormann, H., 2011: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change, 104(3-4), 729−753, https://doi.org/10.1007/s10584-010-9869-7.
Chiew, F. H. S., and T. A. Mcmahon, 1992: An Australian comparison of penman’s potential evapotranspiration estimates and class A evaporation pan data. Australian Journal of Soil Research, 30, 101−12, https://doi.org/10.1071/SR9920101.
Ding, R. S., S. Z. Kang, F. S. Li, Y. Q. Zhang, and L. Tong, 2013: Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching. Agricultural and Forest Meteorology, 168, 140−148, https://doi.org/10.1016/j.agrformet.2012.08.003.
Dingman, S. L., 1992: Physical Hydrology. Prentice Hall, Upper Savage, 575 pp.
Donohue, R. J., T. R. McVicar, and M. L. Roderick, 2010: Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1−4), 186−197, https://doi.org/10.1016/j.jhydrol.2010.03.020.
Douglas, E. M., J. M. Jacobs, D. M. Sumner, and R. L. Ray, 2009: A comparison of models for estimating potential evapotranspiration for Florida land cover types. Journal of Hydrology, 373(3-4), 366−376, https://doi.org/10.1016/j.jhydrol.2009.04.029.
Gao, G., D. L. Chen, G. Y. Ren, Y. Chen, and Y. M. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956−2000. Journal of Geographical Sciences, 16(1), 3−12, https://doi.org/10.1007/s11442-006-0101-7.
Gao, G., D. L. Chen, C. Y. Xu, and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960−2002. Journal of Geophysical Research., 112, D11120, https://doi.org/10.1029/2006JD008010.
Gong, L. B., C. Y. Xu, D. L. Chen, S. Halldin, and Y. D. Chen, 2006: Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology, 329, 620−629, https://doi.org/10.1016/j.jhydrol.2006.03.027.
Han, S. J., D. Xu, and S. L. Wang, 2012: Decreasing potential evaporation trends in china from 1956 to 2005: Accelerated in regions with significant agricultural influence? Agricultural and Forest Meteorology, 154−155, 44−56, https://doi.org/10.1016/j.agrformet.2011.10.009.
Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96−99, https://doi.org/10.13031/2013.26773.
He, Y. Y., K. C. Wang, C. L. Zhou, and M. Wild, 2018: A revisit of global dimming and brightening based on the sunshine duration. Geophysical Research Letters., 45, 4281−4289, https://doi.org/10.1029/2018GL077424.
Hu, B., and Coauthors, 2017: Quantification of the impact of aerosol on broadband solar radiation in North China. Scientific Reports, 7, 44851, https://doi.org/10.1038/srep44851.
Jacobs, J. M., M. C. Anderson, L. C. Friess, and G. R. Diak, 2004: Solar radiation, longwave radiation and emergent wetland evapotranspiration estimates from satellite data in Florida, USA. Hydrological Sciences Journal, 49(3), 476, https://doi.org/10.1623/hysj.49.3.461.54352.
Jensen, M. E., and H. R. Haise, 1963: Estimating evapotranspiration from solar radiation. Proceedings of the American Society of Civil Engineers, Journal of the Irrigation and Drainage Division, 89, 15−41.
Jensen, M. E., R. D. Burman, and R. G. Allen, 1990: Evapotranspiration and Irrigation Water Requirements. American Society of Civil Engineers.
Li, S. E., S. Z. Kang, L. Zhang, J. H. Zhang, T. S. Du, L. Tong, and R. S. Ding, 2016: Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology, 543, 450−461, https://doi.org/10.1016/j.jhydrol.2016.10.022.
Linacre, E. T., 1994: Estimating U.S. class a pan evaporation from few climate data. Water International, 19, 5−14, https://doi.org/10.1080/02508069408686189.
Liu, B. H., M. Xu, M. Henderson, and W. G. Gong, 2004: A spatial analysis of pan evaporation trends in China: 1955−2004. Journal of Geophysical Research, 109, D15102, https://doi.org/10.1029/2004JD004511.
Lu, J. B., G. Sun, S. G. McNulty, and D. M. Amatya, 2005: A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41(3), 621−633, https://doi.org/10.1111/j.1752-1688.2005.tb03759.x.
Makkink, G. F., 1957: Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers, 11, 277−288.
McCuen, R. H., 1974: A sensitivity and error analysis CF procedures used for estimating evaporation. Journal of the American Water Resources, 10, 486−497, https://doi.org/10.1111/j.1752-1688.1974.tb00590.x.
McMahon, T. A., M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar, 2013: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrology and Earth System Sciences, 17(4), 1331−1363, https://doi.org/10.5194/hess-17-1331-2013.
McVicar, T. R., T. G. VanNiel, L. T. Li, M. F. Hutchinson, X. M. Mu, and Z. H. Liu, 2007: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338(3−4), 196−220, https://doi.org/10.1016/j.jhydrol.2007.02.018.
Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne, 2005: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling Journal of Hydrology, 303, 290−306, https://doi.org/10.1016/j.jhydrol.2004.08.026.
Paparrizos, S., F. Maris, and A. Matzarakis, 2017: Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theoretical and Applied Climatology, 128(3−4), 745−759, https://doi.org/10.1007/s00704-015-1728-z.
Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193, 120−145, https://doi.org/10.1098/rspa.1948.0037.
Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81−92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
Samani, Z. A., and M. Pessarakli, 1986: Estimating potential crop evapotranspiration with minimum data in Arizona. Transactions of the ASAE, 29(2), 522−524, https://doi.org/10.13031/2013.30184.
Shen, Y. J., C. M. Liu, M. Liu, Y. Zeng, and C. Y. Tian, 2009: Change in pan evaporation over the past 50 years in the arid region of China. Hydrological Processes, 24, 225−231, https://doi.org/10.1002/hyp.7435.
Steiner, J., T. Howell, and A. D. Schneider, 1991: Lysimetric evaluation of daily potential evapotranspiration models for grain sorghum. Agronomy Journal, 83, 240−247, https://doi.org/10.2134/agronj1991.00021962008300010055x.
Tang, W. J., K. Yang, J. Qin, C. C. K. Cheng, and J. He, 2011: Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmospheric Chemistry and Physics, 11, 393−406, https://doi.org/10.5194/acp-11-393-2011.
Wang, A. H., and X. B. Zeng, 2012c: Evaluation of multire analysis products with in situ observations over the Tibetan Plateau. Journal of Geophysical Research, 117, D05102, https://doi.org/10.1029/2011JD016553.
Wang, K. C., and R. E. Dickinson, 2012a: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics., 50, RG2005, https://doi.org/10.1029/2011RG000373.
Wang, K. C., R. E. Dickinson, M. Wild, and S. Liang, 2012b: Atmospheric impacts on climatic variability of surface incident solar radiation. Atmospheric Chemistry and Physics, 12(20), 9581−9592, https://doi.org/10.5194/acp-12-9581-2012.
Wang, T. T., J. Zhang, F. B. Sun, and W. B. Liu, 2017: Pan evaporation paradox and evaporative demand from the past to the future over china: A review. WIREs Water, 4(3), e1207, https://doi.org/10.1002/wat2.1207.
Weiß, M., and L. Menzel, 2008: A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Advances in Geosciences, 18, 15−23, https://doi.org/10.5194/adgeo-18-15-2008.
Xu, C. Y., and V. P. Singh, 2002: Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resources Management, 16(3), 197−219, https://doi.org/10.1023/A:1020282515975.
Yang, H. B., and D. W. Yang, 2012: Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, 414−415, 184−193, https://doi.org/10.1016/j.jhydrol.2011.10.043.
Yang, K., J. He, W. J. Tang, J. Qin, and C. C. K. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 150(1), 38−46, https://doi.org/10.1016/j.agrformet.2009.08.004.
Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137, 43−55, https://doi.org/10.1016/j.agrformet.2006.02.001.
Yin, Y. H., S. H. Wu, D. Zheng, and Q. Y. Yang, 2008: Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 95, 77−84, https://doi.org/10.1016/j.agwat.2007.09.002.
Yin, Y. H., S. H. Wu, and E. F. Dai, 2010b: Determining factors in potential evapotranspiration changes over China in the period 1971−2008. Chinese Science Bulletin, 55(29), 3329−3337, https://doi.org/10.1007/s11434-010-3289-y.
Yin, Y. H., S. H. Wu, G. Chen, and E. F. Dai, 2010a: Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theoretical and Applied Climatology, 101(1-2), 19−28, https://doi.org/10.1007/s00704-009-0197-7.
Zeng, Z. Z., L. Q. Peng, and S. L. Piao, 2018: Response of terrestrial evapotranspiration to earth’s greening. Current Opinion in Environmental Sustainability, 33, 9−25, https://doi.org/10.1016/j.cosust.2018.03.001.
Zhang, Y. Q., C. M. Liu, T. N. Tang, and Y. H. Yang, 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res., 112, D12110, https://doi.org/10.1029/2006JD008161.
Zheng, H. X., X. M. Liu, C. M. Liu, X. Q. Dai, and R. R. Zhu, 2009: Assessing contributions to panevaporation trends in Haihe River Basin, China. Journal of Geophysical Research, 114, D24105, https://doi.org/10.1029/2009JD012203.
Zhou, M. C., H. Ishidaira, H. P. Hapuarachchi, J. Magome, A. S. Kiem, and K. Takeuchi, 2006: Estimating potential evapotranspiration using Shuttleworth−Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. Journal of Hydrology, 327(1), 151−173, https://doi.org/10.1016/j.jhydrol.2005.11.013.
Zhu, Z. C., and Coauthors, 2016: Greening of the earth and its drivers. Nat. Clim. Change, 6, 791−795, https://doi.org/10.1038/nclimate3004.
Zuo, D. P., Z. X. Xu, H. Yang, and X. C. Liu, 2012: Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River Basin, China. Hydrological Processes, 26(8), 1149−1160, https://doi.org/10.1002/hyp.8206.
Zuo, H. C., B. L. Chen, S. X. Wang, Y. Guo, B. Zuo, L. Y. Wu, and X. Q. Gao, 2016: Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type. Agricultural and Forest Meteorology, 222, 1−9, https://doi.org/10.1016/j.agrformet.2016.03.002.