Berry, E. X., 1968: Modification of the warm rain process. Preprints, First National Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc., 81−88.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652−660, https://doi.org/10.1175/1520-0450(2003)042<0652:aeoadd>2.0.co;2.
Brandes, E. A., K. Ikeda, G. Zhang, M. Schonhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634−650, https://doi.org/10.1175/jam2489.1.
Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J. Meteor. Soc. Japan Ser. II, 91, 215−227, https://doi.org/10.2151/jmsj.2013-208.
Chen, J., X. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017: Characteristics of cloud systems over the Tibetan Plateau and east China during boreal Summer. J. Climate, 30, 3117−3137, https://doi.org/10.1175/JCLI-D-16-0169.1.
Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815−1842, https://doi.org/10.1002/qj.49712656613.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res.: Atmos., 117, https://doi.org/10.1029/2011JD016537.
Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249−280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.
Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Royal Meteor. Soc., 131, 1997−2017, https://doi.org/10.1256/qj.04.134.
Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846−3879, https://doi.org/10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2.
Franklin, C. N., G. J. Holland, and P. T. May, 2005: Sensitivity of tropical cyclone rainbands to ice-phase microphysics. Mon. Wea. Rev., 133, 2473−2493, https://doi.org/10.1175/MWR2989.1.
Gao, S., L. Ran, and X. Li, 2006: Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cloud-resolving modeling study. Mon. Wea. Rev., 134, 3015−3024, https://doi.org/10.1175/MWR3220.1.
Gao, W., F. Zhao, Z. Hu, and X. Feng, 2011: A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results. Adv. Atmos. Sci., 28, 1184−1200, https://doi.org/10.1007/s00376-010-0087-z.
Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2018: Modeling of cloud microphysics: Can we do better. Bull. Amer. Meteor. Soc., 100, 655−672, https://doi.org/10.1175/BAMS-D-18-0005.1.
Gross, M., and Coauthors, 2018: Physics–dynamics coupling in weather, climate, and earth system models: Challenges and recent progress. Mon. Wea. Rev., 146, 3505−3544, https://doi.org/10.1175/MWR-D-17-0345.1.
Guo, J., and Coauthors, 2017: Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett., 44, 5700−5708, https://doi.org/10.1002/2017GL073533.
Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26−28, https://doi.org/10.1038/249026a0.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte et al., Eds., Cambridge University Press. [Available online from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf]
Huang, H.-L., M.-J. Yang, and C.-H. Sui, 2013: Water budget and precipitation efficiency of typhoon Morakot (2009). J. Atmos. Sci., 71, 112−129, https://doi.org/10.1175/JAS-D-13-053.1.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2011: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898−918, https://doi.org/10.1175/MWR-D-11-00056.1.
Jiang, Z., W. Li, J. Xu, and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 8603−8619, https://doi.org/10.1175/JCLI-D-15-0099.1.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kim, I. W., J. Oh, S. Woo, and R. H. Kripalani, 2018: Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dyn, 1−26, https://doi.org/10.1007/s00382-018-4193-4.
Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 1691−1705, https://doi.org/10.1175/2009WAF2222201.1.
Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2,. Atmos.-Ocean, 35, 257−291, https://doi.org/10.1080/07055900.1997.9649594.
Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281−287, https://doi.org/10.1175/1520-0450-34.1.281.
Li, H., Y. Zhang, P. Zhu, T. Su, J. Yin, and G. Zhai, 2014: Study on the genesis of a short squall line in mountains of Southern Zhejiang in 2012,. J. Zhejiang University (Science Edition), 41, 458−467, https://doi.org/10.3785/j.issn.1008-9497.2014.04.019.
Li, Z., and Coauthors, 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866−929, https://doi.org/10.1002/2015RG000500.
Lin, H.-M., P. K. Wang, and R. E. Schlesinger, 2005: Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains. Atmos. Res., 78, 103−145, https://doi.org/10.1016/j.atmosres.2005.03.005.
Lin, L., Y. Xu, Z. Wang, C. Diao, W. Dong, and S.-P. Xie, 2018: Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys. Res. Lett., 45, 7857−7865, https://doi.org/10.1029/2018GL078308.
Lou, X., Z. Hu, Y. Shi, P. Wang, and X. Zhou, 2003: Numerical simulations of a heavy rainfall case in south China. Adv. Atmos. Sci., 20, 128−138, https://doi.org/10.1007/bf03342057.
Luo, L., M. Xue, K. Zhu, and Z. Wang, 2021: Diagnosing the shape parameters of the gamma particle size distributions in a two-moment microphysics scheme and improvements to explicit hail prediction. Atmo. Res., 258, 105651, https://doi.org/10.1016/j.atmosres.2021.105651.
Mao, J., F. Ping, L. Yin, and X. Qiu, 2018: A study of cloud microphysical processes associated with torrential rainfall event over Beijing. J. Geophys. Res.: Atmos., 123, 8768−8791, https://doi.org/10.1029/2018JD028490.
McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985−1004, https://doi.org/10.1175/1520-0450-30.7.985.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065−3081, https://doi.org/10.1175/JAS3534.1.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051−3064, https://doi.org/10.1175/JAS3535.1.
Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-Induced Errors in Bulk Microphysics Schemes. J. Atmos. Sci., 67, 3931−3948, https://doi.org/10.1175/2010JAS3541.1.
Milbrandt, J. A., H. Morrison, D. T. Dawson Ii, and M. Paukert, 2021: A triple-moment representation of ice in the predicted particle properties (P3) microphysics scheme. J. Atmos. Sci., 78, 439−458, https://doi.org/10.1175/JAS-D-20-0084.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos., 102, 16663−16682, https://doi.org/10.1029/97JD00237.
Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683−3704, https://doi.org/10.1175/jas3564.1.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.: Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139.
Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 1−18, https://doi.org/10.1007/s00382-015-2713-z.
Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res.: Atmos., 114, https://doi.org/10.1029/2008JD011575.
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071−1107, https://doi.org/10.1002/qj.49712454804.
Seifert, A., 2005: On the shape-slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44, 1146−1151, https://doi.org/10.1175/jam2254.1.
Tao, W. K., C. L. Shie, J. Simpson, S. Braun, R. H. Johnson, and P. E. Ciesielski, 2003: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60, 2929−2956, https://doi.org/10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.
Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231−235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.
Tao, Y., and Y. Hong, 2009: Numerical simulation of influence of drop size distribution shape on cloud and precipitation. Acta Meteorol. Sin., 23, 760−771.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 11−15.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Van Weverberg, K., and Coauthors, 2012: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 1104−1128, https://doi.org/10.1175/jas-d-12-0104.1.
Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia Based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 1606−1629, https://doi.org/10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.
Wang, D., J. Yin, and G. Zhai, 2015: In-situ measurements of cloud-precipitation microphysics in the East Asian monsoon region since 1960,. J. Meteorol. Res., 29, 155−179, https://doi.org/10.1007/s13351-015-3235-7.
Wang, H., L. Liu, G. Wang, W. Zhuang, Z. Zhang, and X. Chen, 2009: Development and application of the doppler weather radar 3-D digital mosaic system. J. Appl. Metero. Sci., 20, 214−224. (in Chinese with English Abstract)
Wang, H., J. Yin, and D. Wang, 2014: Comparative analysis of single-moment and double-moment microphysics schemes on a local heavy rainfall in South China. Plateau Meteor., 33, 1341−1351, https://doi.org/10.7522/j.issn.1000-0534.2013.00119.
Wang, H., F. Kong, N. Wu, H. Lan, and J. Yin, 2019: An investigation into microphysical structure of a squall line in south China observed with a polarimetric radar and a disdrometer. Atmos. Res., 226, 171−180, https://doi.org/10.1016/j.atmosres.2019.04.009.
Wen, L., L.-S. Cheng, H.-C. Zuo, and S.-H. Lv, 2006: Numerical simulation and analysis on the cloud microphysics fields of "98.5" heavy rainfall of south China in pre-summer flood season. Plateau Meteor., 25, 423−429. (in Chinese with English Abstract)
Xu, H., and S. Wang, 1985: A numerical model of hail-bearing convective cloud (1): Biparameterevolution of size distribution ofraindrops, frozen raindropsand hailstones. Acta. Meteor. Sinica, 43, 13−25. (in Chinese with English Abstract)
Xu, H., and Y. Duan, 1999: Some questions in studying the evolution of size distribution spectrum of hydrometeor particles. Acta. Meteor. Sinica, 57, 450−460. (in Chinese with English Abstract)
Xu, H., and J. Yin, 2017: Key issues in developing numerical models for artificial weather modification. J. Meteorol. Res., 31, 1007−1017, https://doi.org/10.1007/s13351-017-7113-3.
Xu, W., 2012: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577−1592, https://doi.org/10.1175/MWR-D-12-00177.1.
Xu, X.-H., X. Yu, J. Dai, G. Liu, Y. Zhu, and Z. Yue, 2011: Direct observation from sounding of the warming caused by homogeneous freezing in a severe storm. Trans. Atmos. Sci., 34, 416−422, https://doi.org/10.13878/j.cnki.dqkxxb.2011.04.007.
Yang, J., H. Xiao, W. Xiao, and Y. Qin, 2010: A study of raindrop size distributions and their characteristic parameters based on the methods of SATP and SIFT. Plateau Meteor., 29, 486−497. (in Chinese with English Abstract)
Yano, J. I., and V. T. J. Phillips, 2010: Ice–ice collisions: an ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322−333, https://doi.org/10.1175/2010jas3607.1.
Yao, B., C. Liu, Y. Yin, P. Zhang, M. Min, and W. Han, 2018: Radiance-based evaluation of WRF cloud properties over East Asia: Direct comparison with FY-2E observations. J. Geophys. Res.: Atmos., 123, 4613−4629, https://doi.org/10.1029/2017JD027600.
Yin, J., D. Wang, and G. Zhai, 2014a: A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China. Adv. Earth Sci., 29, 238−249, https://doi.org/10.11867/j.issn.1001-8166.2014.02.0238.
Yin, J.-F., D.-H. Wang, G.-Q. Zhai, and H.-B. Xu, 2014b: An investigation into liquid water content versus cloud number concentration in the stratiform clouds over North China. Atmos. Res., 139, 137−143, https://doi.org/10.1016/j.atmosres.2013.12.004.
Yin, J.-F., D.-H. Wang, Z.-M. Liang, C.-J. Liu, G.-Q. Zhai, and H. Wang, 2018: Numerical study of the role of microphysical latent heating and surface heat fluxes in a severe precipitation event in the warm sector over Southern China. Asia-Pacific J. Atmos. Sci., 54, 77−90, https://doi.org/10.1007/s13143-017-0061-0.
Yin, J., D. Wang, and G. Zhai, 2011: Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmos. Res., 102, 206−217, https://doi.org/10.1016/j.atmosres.2011.07.002.
Yin, J., D. Wang, and G. Zhai, 2012: An evaluation of ice nuclei characteristics from the long-term measurement data over North China. Asia-Pacific J. Atmos. Sci., 48, 197−204, https://doi.org/10.1007/s13143-012-0020-8.
Yin, J., D. Wang, and G. Zhai, 2013a: A comparative study of cloud-precipitation microphysical properties between East Asia and Other Regions. J. Meteor. Soc. Japan. Ser. II, 91, 507−526, https://doi.org/10.2151/jmsj.2013-406.
Yin, J., D. Wang, G. Zhai, and Z. Wang, 2013b: Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data. Acta. Meteor. Sinica, 27, 26−39, https://doi.org/10.1007/s13351-013-0104-0.
Yin, J., D. Wang, and G. Zhai, 2015: An attempt to improve Kessler-type parameterization of warm cloud microphysical conversion processes using CloudSat observations. J. Meteorol. Res., 29, 82−92, https://doi.org/10.1007/s13351-015-4091-1.
Yin, J., X. Liang, H. Wang, and H. Xue, 2022: Representation of the autoconversion from cloud to rain using a weighted ensemble approach: : A case study using WRF v4.1.3. Geosci. Model Dev., 15, 771−786, https://doi.org/10.5194/gmd-15-771-2022.
Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941−1963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
Zhang, D.-L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 1426−1431, https://doi.org/10.1002/grl.50304.
Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information. J. Atmos. Ocean. Tech., 20, 1106−1119, https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.
Zhang, Y., D. Wang, J. Yin, and H. Xu, 2016: Impacts of terminal velocity and drop size distribution shape on the numerical simulation of precipitation. Chinese J. Atmo. Sci., 40, 841−852, https://doi.org/10.3878/j.issn.1006-9895.1504.15193.
Zhao, G., R. Chu, T. Zhang, W. Jia, J. Shen, and Z. Wu, 2010: Analysis of the characteristics of snow drop size distribution in the Qilian Mountains. Sci. Cold Arid Regions, 2, 419−426, https://doi.org/10.3724/SP.J.1226.2010.00419.
Zhao, Y., Q. Zhang, Y. Du, M. Jiang, and J. Zhang, 2013: Objective analysis of circulation extremes during the 21 July 2012 torrential rain in Beijing. Acta. Meteor. Sinica, 27, 626−635, https://doi.org/10.1007/s13351-013-0507-y.
Zhong, L., R. Mu, D. Zhang, P. Zhao, Z. Zhang, and N. Wang, 2015: An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res.: Atmos., 120, 3274−3291, https://doi.org/10.1002/2014JD022686.