Ayarzagüena, B., and J. A. Screen, 2016: Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys. Res. Lett., 43, 2801−2809, https://doi.org/10.1002/2016GL068092.
Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 4734−4739, https://doi.org/10.1002/grl.50880.
Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Climate Change, 6, 277−286, https://doi.org/10.1002/wcc.337.
Chen, J. Q., and Y. F. Shi, 2002: Comparison of the winter temperature in the Yangtze Delta in the last 1 000a with the record in Guliya ice core. Journal of Glaciology and Geocryology, 24(1), 32−39. (in Chinese with English abstract)
Chen, X., J. Liu, and S. M. Wang, 2005: Climate simulation of Little Ice Age over Eastern Asia. Scientia Meteorologica Sinica, 25(1), 1−8. (in Chinese with English abstract)
Cheung, H. H. N., N. Keenlyside, N. E. Omrani, and W. Zhou, 2018: Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate. Adv. Atmos. Sci., 35, 38−51, https://doi.org/10.1007/s00376-017-7156-5.
Cheung, H. H. N., W. Zhou, M. Y. T. Leung, C. M. Shun, S. M. Lee, and H. W. Tong, 2016: A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking. J. Geophys. Res.: Atmos., 121(22), 13 443−13 457, https://doi.org/10.1002/2016JD025288.
Chripko, S., R. Msadek, E. Sanchez-Gomez, L. Terray, L. Bessières, and M. P. Moine, 2021: Impact of reduced arctic sea ice on northern hemisphere climate and weather in autumn and winter. J. Climate, 34(14), 5847−5867, https://doi.org/10.1175/JCLI-D-20-0515.1.
Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7(1), 014007, https://doi.org/10.1088/1748-9326/7/1/014007.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627−637, https://doi.org/10.1038/ngeo2234.
Dai, A. G., and M. R. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nature Climate Change, 10, 231−237, https://doi.org/10.1038/s41558-020-0694-3.
Dai, G. K., C. X. Li, Z. Han, D. H. Luo, and Y. Yao, 2022: The nature and predictability of the east Asian extreme cold events of 2020/21. Adv. Atmos. Sci., 39, 566−575, https://doi.org/10.1007/s00376-021-1057-3.
D'Arrigo, R., G. Jacoby, R. Wilson, and F. Panagiotopoulos, 2005: A reconstructed Siberian High index since AD 1599 from Eurasian and North American tree rings. Geophys. Res. Lett., 32(5), L05705, https://doi.org/10.1029/2004GL022271.
Deser, C., L. T. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 2149−2157, https://doi.org/10.1002/2016GL067792.
Ding, L. L., Q. S. Ge, J. Y. Zheng, and Z. X. Hao, 2016: Variations in annual winter mean temperature in South China since 1736. Boreas, 45(2), 252−259, https://doi.org/10.1111/bor.12144.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39(6), L06801, https://doi.org/10.1029/2012GL051000.
Ge, Q., J. Zheng, X. Fang, Z. Man, X. Zhang, P. Zhang, and W. C. Wang, 2003: Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. The Holocene, 13(6), 933−940, https://doi.org/10.1191/0959683603hl680rr.
Ge, Q. S., 2011: The Climate Change in China during the Past Dynasties. Science Press, 61−665. (in Chinese)
Gong, D. Y., and S. W. Wang, 1999: Long-term variability of the Siberian High and the possible connection to global warming. Acta Geographica Sinica, 54(2), 125−133, https://doi.org/10.3321/j.issn:0375-5444.1999.02.004. (in Chinese with English abstract
Gong, Z. Q., G. L. Feng, F. M. Ren, and J. P. Li, 2014: A regional extreme low temperature event and its main atmospheric contributing factors. Theor. Appl. Climatol., 117(1), 195−206, https://doi.org/10.1007/S00704-013-0997-7.
Han, Z. Q., 2003: A study on abnormal warm and cold winters in the area of the Middle and Lower Reaches of the Changjiang River during the Ming and Qing Dynasty (1440−1899). Collections of Essays on Chinese Historical Geography, 18(2), 41−49. (in Chinese with English abstract)
Hao, Z. X., J. Y. Zheng, Q. S. Ge, and W. C. Wang, 2012: Winter temperature variations over the middle and lower reaches of the Yangtze River since 1736 AD. Climate of the Past, 8(3), 1023−1030, https://doi.org/10.5194/cp-8-1023-2012.
Herring, S. C., A. Hoell, M. P. Hoerling, J. P. Kossin, C. J. Schreck III, and P. A. Stott, 2016: Introduction to explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteor. Soc., 97, S1−S3, https://doi.org/10.1175/BAMS-D-16-0313.1.
Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008gl037079.
Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25(7), 2561−2568, https://doi.org/10.1175/JCLI-D-11-00449.1.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
Kretschmer, M., G. Zappa, and T. G. Shepherd, 2020: The role of Barents–Kara sea ice loss in projected polar vortex changes. Weather and Climate Dynamics, 1(2), 715−730, https://doi.org/10.5194/wcd-1-715-2020.
Kretschmer, M., D. Coumou, J. F. Donges, and J. Runge, 2016: Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. J. Climate, 29(11), 4069−4081, https://doi.org/10.1175/JCLI-D-15-0654.1.
Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99(1), 49−60, https://doi.org/10.1175/BAMS-D-16-0259.1.
Kug, J. S., J. H. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8(10), 759−762, https://doi.org/10.1038/ngeo2517.
Li, J. P., T. J. Xie, X. X. Tang, H. Wang, C. Sun, J. Feng, F. Zheng, and R. Q. Ding, 2022: Influence of the NAO on wintertime surface air temperature over East Asia: Multidecadal variability and decadal prediction. Adv. Atmos. Sci., 39, 625−642, https://doi.org/10.1007/s00376-021-1075-1.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Luo, B. H., D. H. Luo, L. X. Wu, L. H. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environmental Research Letters, 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925−3947, https://doi.org/10.1175/JCLI-D-15-0611.1.
Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235−4261, https://doi.org/10.1175/JCLI-D-18-0449.1.
Ma, S. M., and C. W. Zhu, 2019: Extreme cold wave over East Asia in January 2016: A possible response to the larger internal atmospheric variability induced by Arctic warming. J. Climate, 32(4), 1203−1216, https://doi.org/10.1175/JCLI-D-18-0234.1.
Martineau, P., G. Chen, and D. A. Burrows, 2017: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather extremes. J. Climate, 30, 5675−5697, https://doi.org/10.1175/JCLI-D-16-0692.1.
McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838−842, https://doi.org/10.1038/ngeo2820.
Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12), 869−873, https://doi.org/10.1038/ngeo2277.
Mu, M., D. H. Luo, and F. Zheng, 2022: Preface to the special issue on extreme cold events from East Asia to North America in winter 2020/21. Adv. Atmos. Sci., 39(4), 543−545, https://doi.org/10.1007/s00376-021-1004-3.
Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res.: Atmos., 120, 3209−3227, https://doi.org/10.1002/2014JD022848.
Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 3494−3501, https://doi.org/10.1002/2016GL068330.
Ou, T. H., D. L. Chen, J. H. Jeong, H. W. Linderholm, and T. J. Zhou, 2015: Changes in winter cold surges over southeast China: 1961 to 2012. Asia-Pacific Journal of Atmospheric Sciences, 51(1), 29−37, https://doi.org/10.1007/s13143-014-0057-y.
Overland, J., J. A. Francis, R. Hall, E. Hanna, S. J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28(20), 7917−7932, https://doi.org/10.1175/JCLI-D-14-00822.1.
Peings, Y., Z. M. Labe, and G. Magnusdottir, 2021: Are 100 ensemble members enough to capture the remote atmospheric response to + 2°C Arctic sea ice loss? J. Climate, 34(10), 3751−3769, https://doi.org/10.1175/JCLI-D-20-0613.1.
Qian, C., and Coauthors, 2018: Human influence on the record-breaking cold event in January of 2016 in Eastern China. Bull. Amer. Meteor. Soc., 99(1), S118−S122, https://doi.org/10.1175/BAMS-D-17-0095.1.
Santolaria-Otín, M., J. García-Serrano, M. Ménégoz, and J. Bech, 2020: On the observed connection between Arctic sea ice and Eurasian snow in relation to the winter North Atlantic Oscillation. Environmental Research Letters, 15(12), 124010, https://doi.org/10.1088/1748-9326/abad57.
Smith, D. M., and Coauthors, 2022: Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications, 13(1), 727, https://doi.org/10.1038/S41467-022-28283-Y.
Song, L., and R. G. Wu, 2017: Processes for occurrence of strong cold events over Eastern China. J. Climate, 30, 9247−9266, https://doi.org/10.1175/JCLI-D-16-0857.1.
Sun, L. T., J. Perlwitz, and M. Hoerling, 2016: What caused the recent "warm Arctic, cold continents" trend pattern in winter temperatures? Geophys. Res. Lett., 43, 5345−5352, https://doi.org/10.1002/2016GL069024.
Sun, L. T., C. Deser, I. Simpson, and M. Sigmond, 2022: Uncertainty in the winter tropospheric response to Arctic Sea ice loss: The role of stratospheric polar vortex internal variability. J. Climate, 35(10), 3109−3130, https://doi.org/10.1175/JCLI-D-21-0543.1.
Sung, M. K., S. H. Kim, B. M. Kim, and Y. S. Choi, 2018: Interdecadal variability of the warm Arctic and cold Eurasia pattern and its North Atlantic origin. J. Climate, 31, 5793−5810, https://doi.org/10.1175/JCLI-D-17-0562.1.
Tan, Q. X., 1987: The Historical Atlas of China (7) (8). SinoMaps Press, 1−144, 1−120. (in Chinese)
Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1), 014036, https://doi.org/10.1088/1748-9326/8/1/014036.
Trouet, V., J. Esper, N. E. Graham, A. Baker, J. D. Scourse, and D. C. Frank, 2009: Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science, 324(5923), 78−80, https://doi.org/10.1126/science.1166349.
Wang, S. W., 2008: Climatological aspects of severe winters in China. Advances in Climate Change Research, 4(2), 68−72. (in Chinese with English abstract)
Wang, S. W., and R. S. Wang, 1990: Variations of seasonal and annual temperatures during 1470−1979 AD in eastern China. Acta Meteorologica Sinica, 48(1), 26−35. (in Chinese with English abstract)
Wang, S. W., J. L. Ye, and D. Y. Gong, 1998: Climate in China during the Little Ice Age. Quaternary Sciences, 18(1), 54−64. (in Chinese with English abstract)
Wang, S. W., D. Y. Gong, and Z. H. Chen, 1999: Serious climatic disasters of China during the past 100 years. Quarterly Journal of Applied Meteorology, 10(S1), 43−53, https://doi.org/10.3969/j.issn.1001-7313.1999.z1.006. (in Chinese with English abstract
Whan, K., F. Zwiers, and J. Sillmann, 2016: The influence of atmospheric blocking on extreme winter minimum temperatures in North America. J. Climate, 29, 4361−4381, https://doi.org/10.1175/JCLI-D-15-0493.1.
Wu, B. Y., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.
Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56, 3220−3228, https://doi.org/10.1007/s11434-011-4696-4.
Wu, Y. T., and K. L. Smith, 2016: Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. J. Climate, 29, 2041−2058, https://doi.org/10.1175/JCLI-D-15-0602.1.
Xie, T. J., J. P. Li, C. Sun, R. Q. Ding, K. C. Wang, C. F. Zhao, and J. Feng, 2019: NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia. Climate Dyn., 53(1-2), 895−905, https://doi.org/10.1007/s00382-019-04624-4.
Xu, X. P., S. P. He, Y. Q. Gao, T. Furevik, H. J. Wang, F. Li, and F. Ogawa, 2019: Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dyn., 53(7), 3971−3983, https://doi.org/10.1007/s00382-019-04764-7.
Yamaguchi, J., Y. Kanno, G. X. Chen, and T. Iwasaki, 2019: Cold air mass analysis of the record-breaking cold surge event over East Asia in January 2016. J. Meteor. Soc. Japan, 97, 275−293, https://doi.org/10.2151/JMSJ.2019-015.
Yan, J. H., H. L. Liu, J. Y. Zheng, Z. X. Hao, Q. S. Ge, and H. Fu, 2014: The extreme cold winter of 1620 in the middle and lower reaches of the Yangtze River. Progress in Geography, 33(6), 835−840, https://doi.org/10.11820/dlkxjz.2014.06.012. (in Chinese with English abstract
Yang, X. Y., X. J. Yuan, and M. Ting, 2016: Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Climate, 29(14), 5103−5122, https://doi.org/10.1175/JCLI-D-15-0669.1.
Yao, Y., D. H. Luo, A. G. Dai, and S. B. Feldstein, 2016: The positive North Atlantic oscillation with downstream blocking and middle east snowstorms: Impacts of the North Atlantic jet. J. Climate, 29, 1853−1876, https://doi.org/10.1175/JCLI-D-15-0350.1.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549−3568, https://doi.org/10.1175/JCLI-D-16-0261.1.
Zhang, D. E., 1980: The several characteristics of winter temperature change in the southern China during past 500 years. Chinese Science Bulletin, 25(6), 270−272. (in Chinese)
Zhang, D. E., 2005: The sorting and latest applications of historical climate documentary records of China. Science & Technology Review, 23(8), 17−19. (in Chinese with English abstract)
Zhang, D. E., 2013: A Compendium of Chinese Meteorological Records of the Last 3, 000 Years. 2nd ed. Jiangsu Education Press. (in Chinese)
Zhang, D. E., L. H. Wang, and X. Sun, 2003: Reconstruction of grid precipitation anomaly in eastern China from historical documents: New study on Chinese historical climate records. Quaternary Sciences, 23(2), 177−183. (in Chinese with English abstract)
Zhang, P. Y., and G. F. Gong, 1979: Some characteristics of climatic fluctuations in China since 16th century. Acta Geographica Sinica, 34(3), 238−247, https://doi.org/10.11821/xb197903005. (in Chinese with English abstract
Zhang, P. F., Y. T. Wu, and K. L. Smith, 2018a: Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Climate Dyn., 50, 527−539, https://doi.org/10.1007/s00382-017-3624-y.
Zhang, P. F., Y. T. Wu, I. R. Simpson, K. L. Smith, X. D. Zhang, B. De, and P. Callaghan, 2018b: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.
Zhang, X. D., Y. F. Fu, Z. Y. Guan, H. Tang, G. M. Wang, Z. M. Wang, P. L. Wu, and X. Q. Yang, 2020: Influence of Arctic warming amplification on Eurasian winter extreme weather and climate: Consensus, open questions, and debates. Journal of the Meteorological Sciences, 40, 596−604, https://doi.org/10.3969/2020jms.0079. (in Chinese with English abstract
Zhao, W. L., and Y. Y. Ye, 1996: Preliminary study of climate change during the last 500 years in the middle reaches of the Yangtze River. Hydrology, (5): 19−23. (in Chinese)
Zheng, F., and Coauthors, 2022: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., 39, 546−552, https://doi.org/10.1007/s00376-021-1033-y.
Zheng, J. Y., Z. X. Hao, X. Q. Fang, and Q. S. Ge, 2014: Changing characteristics of extreme climate events during past 2000 years in China. Progress in Geography, 33(1), 3−12, https://doi.org/10.11820/dlkxjz.2014.01.001. (in Chinese with English abstract
Zheng, J. Y., Y. Liu, Z. X. Hao, X. Z. Zhang, X. Ma, H. L. Liu, and Q. S. Ge, 2018: Winter temperatures of southern China reconstructed from phenological cold/warm events recorded in historical documents over the past 500 years. Quaternary International, 479, 42−47, https://doi.org/10.1016/j.quaint.2017.08.033.