Buizza, R., 1994a: Localization of optimal perturbations using a projection operator. Quart. J. Roy. Meteor. Soc., 120, 1647−1681, https://doi.org/10.1002/qj.49712052010.
Buizza, R., 1994b: Sensitivity of optimal unstable structures. Quart. J. Roy. Meteor. Soc., 120, 429−451, https://doi.org/10.1002/qj.49712051609.
Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125, 99−119, https://doi.org/10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2.
Buizza, R., and T. N. Palmer, 1995: The singular–vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 1434−1456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.
Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. J. Zhu, and M. Z. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 1076−1097, https://doi.org/10.1175/MWR2905.1.
Coutinho, M. M., B. J. Hoskins, and R. Buizza, 2004: The influence of physical processes on extratropical singular vectors. J. Atmos. Sci., 61, 195−209, https://doi.org/10.1175/1520-0469(2004)061<0195:TIOPPO>2.0.CO;2.
Descamps, L., C. Labadie, A. Joly, E. Bazile, P. Arbogast, and P. Cébron, 2015: PEARP, the Météo-France short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 141, 1671−1685, https://doi.org/10.1002/qj.2469.
Diaconescu, E. P., and R. Laprise, 2012: Singular vectors in atmospheric sciences: A review. Earth–Science Reviews, 113, 161−175, https://doi.org/10.1016/j.earscirev.2012.05.005.
Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 2476−2488, https://doi.org/10.1175/JAS-D-14-0007.1.
Durran, D. R., P. A. Reinecke, and J. D. Doyle, 2013: Large–scale errors and mesoscale predictability in Pacific Northwest snowstorms. J. Atmos. Sci., 70, 1470−1487, https://doi.org/10.1175/JAS-D-12-0202.1.
Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular–vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627−1648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.
Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155−167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.
Hoskins, B., R. Buizza, and J. Badger, 2000: The nature of singular vector growth and structure. Quart. J. Roy. Meteor. Soc., 126, 1565−1580, https://doi.org/10.1256/smsqj.56601.
Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus A, 40, 81−95, https://doi.org/10.1111/j.1600-0870.1988.tb00408.x.
Leith, C. E., 1971: Atmospheric predictability and two–dimensional turbulence. J. Atmos. Sci., 28, 145−161, https://doi.org/10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2.
Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. J. Atmos. Sci., 29, 1041−1058, https://doi.org/10.117 5/1520-0469(1972)029<1041:POTF>2.0.CO;2.
Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 3515−3539, https://doi.org/10.1016/j.jcp.2007.02.014.
Li, X. L., J. Chen, Y. Z. Liu, F. Peng, and Z. H. Huo, 2019: Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting. Transactions of Atmospheric Sciences, 42, 348−359, https://doi.org/10.13878/j.cnki.dqkxxb.20190318001.
Liu, Y. Z., X. S. Shen, and X. L. Li, 2013: Research on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteorologica Sinica, 71, 517−526, https://doi.org/10.11676/qxxb2013.043.
Liu, Y. Z., L. Zhang, and Z. Y. Jin, 2017: The optimization of GRAPES global tangent linear model and adjoint model. Journal of Applied Meteorological Science, 28, 62−71, https://doi.org/10.11898/1001-7313.20170106.
Liu, Y. Z., L. Zhang, and Z. H. Lian, 2018: Conjugate gradient algorithm in the four–dimensional variational data assimilation system in GRAPES. J. Meteor. Res., 32, 974−984, https://doi.org/10.1007/s13351-018-8053-2.
Lorenz, E. N., 1965: A study of the predictability of a 28–variable atmospheric model. Tellus, 17, 321−333, https://doi.org/10.3402/tellusa.v17i3.9076.
Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus A, 21, 289−307, https://doi.org/10.3402/tellusa.v21i3.10086.
Métais, O., and M. Lesieur, 1986: Statistical predictability of decaying turbulence. J. Atmos. Sci., 43, 857−870, https://doi.org/10.1175/1520-0469(1986)043<0857:SPODT>2.0.CO;2.
Montani, A., and A. J. Thorpe, 2002: Mechanisms leading to singular-vector growth for FASTEX cyclones. Quart. J. Roy. Meteor. Soc., 128, 131−148, https://doi.org/10.1256/003590 00260498824.
Ono, K., 2020: Extension of the Lanczos algorithm for simultaneous computation of multiple targeted singular vector sets. Quart. J. Roy. Meteor. Soc., 146, 454−467, https://doi.org/10.1002/qj.3686.
Ono, K., M. Kunii, and Y. Honda, 2021: The regional model-based mesoscale ensemble prediction system, MEPS, at the Japan meteorological agency. Quart. J. Roy. Meteor. Soc., 147, 465−484, https://doi.org/10.1002/qj.3928.
Peng, F., X. L. Li, and J. Chen, 2022: Stochastically perturbed parameterizations for the process–level representation of model uncertainties in the CMA global ensemble prediction system. J. Meteor. Res., 36, 733−749, https://doi.org/10.1007/s13351-022-2011-8.
Rotunno, R., C. Snyder, and F. Judt, 2023: Upscale versus “Up-Amplitude” growth of forecast-error spectra. J. Atmos. Sci., 80, 63−72, https://doi.org/10.1175/JAS-D-22-0070.1.
Saito, K., M. Hara, M. Kunii, H. Seko, and M. Yamaguchi, 2011: Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP). Tellus A: Dynamic Meteorology and Oceanography, 63, 445−467, https://doi.org/10.1111/j.1600-0870.2010.00509.x.
Shen, X. S., J. J. Wang, Z. C. Li, D. H. Chen, and J. D. Gong, 2020: China's independent and innovative development of numerical weather prediction. Acta Meteorologica Sinica, 78, 451−476, https://doi.org/10.11676/qxxb2020.030.
Stanski, H. R., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification methods in meteorology. Research Rep. No. 89-5.
Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419−1438, https://doi.org/10.1175/JAS-D-15-0142.1.
Tan, Z. M., F. Q. Zhang, R. Rotunno, and C. Snyder, 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61, 1794−1804, https://doi.org/10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2.
Wang, J., B. Wang, J. J. Liu, Y. Z. Liu, J. Chen, and Z. H. Huo, 2020: Application and characteristic analysis of the moist singular vector in GRAPES–GEPS. Adv. Atmos. Sci., 37, 1164−1178, https://doi.org/10.1007/s00376-020-0092-9.
Wang, J., J. Chen, Y. Z. Liu, J. J. Liu, B. Wang, X. L. Li, F. J. Chen, and Z. H. Huo, 2023: Development of moist singular vectors in GRAPES–GEPS and a preliminary evaluation. Atmosphere–Ocean, 61, 57−67, https://doi.org/10.1080/07055900.2022.2092445.
Yamaguchi, H., D. Hotta, T. Kanehama, K. Ochi, Y. Ota, R. Sekiguchi, A. Shimpo, and T. Yoshida, 2018: Introduction to JMA's new Global Ensemble Prediction System. CAS/JSC WGNE, Research Activities in Atmospheric and Oceanic Modelling, No. 42, 6.13−16.14.
Ye, L., Y. Z. Liu, J. Chen, Y. Xia, and J. Wang, 2020: A study on multi–scale singular vector initial perturbation method for ensemble prediction. Acta Meteorologica Sinica, 78, 648−664, https://doi.org/10.11676/qxxb2020.042.
Zhang, F. Q., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173−1185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.
Zhang, F. Q., N. F. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection–permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579−3594, https://doi.org/10.1175/JAS4028.1.
Zhang, L., and Coauthors, 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882−1896, https://doi.org/10.1002/qj.3533.