Avila, L. A., R. J. Pasch, J. L. Beven, J. L. Franklin, M. B. Lawrence, S. R. Stewart, and J. G. Jiing, 2003: Eastern North Pacific hurricane season of 2001. Mon. Wea. Rev., 131, 249−262, https://doi.org/10.1175/1520-0493(2003)131<0249:ASNPHS>2.0.CO;2.
Balaguru, K., L. R. Leung, and J.-H. Yoon, 2013: Oceanic control of northeast Pacific hurricane activity at interannual timescales. Environmental Research Letters, 8, 044009, https://doi.org/10.1088/1748-9326/8/4/044009.
Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, 1328, https://doi.org/10.1175/1520-0477(2000)081<1328:CAF>2.3.CO;2.
Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus A, 59, 396−416, https://doi.org/10.1111/j.1600-0870.2007.00236.x.
Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. J. Zhu, and M. Z. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 1076−1097, https://doi.org/10.1175/MWR2905.1.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996−3006, https://doi.org/10.1175/JCLI3457.1.
Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus A, 57, 589−604, https://doi.org/10.1111/j.1600-0870.2005.00117.x.
Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819−4834, https://doi.org/10.1175/JCLI4282.1.
Camargo, S. J., A. H. Sobel, A. G. Barnston, and P. J. Klotzbach, 2010: The influence of natural climate variability, and seasonal forecasts of tropical cyclone activity. Global Perspectives on Tropical Cyclones, from Science to Mitigation, 2nd ed., J. C. L. Chan and J. D. Kepert, Eds. World Scientific Series on Earth System Science in Asia, 4−360.
Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 2206−2219, https://doi.org/10.1002/qj.2516.
Chan, J. C. L., 1985: Tropical cyclone activity in the Northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599−606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.
Chan, J. C. L., 2007: Interannual variations of intense typhoon activity. Tellus A, 59, 455−460, https://doi.org/10.1111/j.1600-0870.2007.00241.x.
Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, https://doi.org/10.1029/2011GL047629.
Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380−398, https://doi.org/10.1175/JCLI-D-12-00061.1.
Chen, T. C., S. Y. Wang, and M. C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 5709−5720, https://doi.org/10.1175/JCLI3934.1.
Chen, T. C., S. P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080−1090, https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.
Chia, H. H. and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934−2944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.
Collins, J. M., and I. M. Mason, 2000: Local environmental conditions related to seasonal tropical cyclone activity in the northeast Pacific basin. Geophys. Res. Lett., 27, 3881−3884, https://doi.org/10.1029/2000GL011614.
DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219−233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.
Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497−5509, https://doi.org/10.1175/2007JCLI1571.1.
Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: Documentation of a systematic bias in the Aviation model’s forecast of the Atlantic tropical upper-tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10, 433−446, https://doi.org/10.1175/1520-0434(1995)010<0433:DOASBI>2.0.CO;2.
Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the RMSE of the ensemble mean. Journal of Hydrometeorology, 15, 1708−1713, https://doi.org/10.1175/JHM-D-14-0008.1.
Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 3587−3598, https://doi.org/10.1175/MWR3435.1.
Franklin, J. L., L. A. Avila, J. L. Beven, M. B. Lawrence, R. J. Pasch, and S. R. Stewart, 2003: Eastern North Pacific hurricane season of 2002. Mon. Wea. Rev., 131, 2379−2393, https://doi.org/10.1175/1520-0493(2003)131<2379:ENPHSO>2.0.CO;2.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155−218.
Gray, W. M., 1984a: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649−1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.
Gray, W. M., 1984b: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 1669−1683, https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2.
Gray, W. M., and J. D. Sheaffer, 1991: El Niño and QBO influences on tropical cyclone activity. Teleconnections Linking Worldwide Anomalies, M. H. Glanz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press, 257−284.
Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 73−86, https://doi.org/10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2.
Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568−572, https://doi.org/10.1038/s41586-019-1559-7.
He, J. Y., J. Y. Wu, and J. J. Luo, 2020: Introduction to climate forecast system version 1.0 of Nanjing University of information science and technology. Transactions of Atmospheric Sciences, 43, 128−143, https://doi.org/10.13878/j.cnki.dqkxxb.20191110007. (in Chinese with English abstract
Hsu, W.-C., C. M., Patricola, and P. Chang, 2019: The impact of climate model sea surface temperature biases on tropical cyclone simulations. Climate Dyn., 53, 173−192, https://doi.org/10.1007/s00382-018-4577-5.
Huang, B. Y., C. Y. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Climate, 34, 2923−2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Jin, F.-F., J. Boucharel, and I.-I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 82−85, https://doi.org/10.1038/nature13958.
Kelley, W. E. Jr., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471−480, https://doi.org/10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2.
Kim, D., and Coauthors, 2018: Process-oriented diagnosis of tropical cyclones in high-resolution GCMs. J. Climate, 31, 1685−1702, https://doi.org/10.1175/JCLI-D-17-0269.1.
Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 2957−2973, https://doi.org/10.1007/s00382-012-1364-6.
Kim, H.-S., C.-H. Ho, P.-S. Chu, and J.-H. Kim, 2010a: Seasonal prediction of summertime tropical cyclone activity over the East China Sea using the least absolute deviation regression and the Poisson regression. International Journal of Climatology, 30, 210−219, https://doi.org/10.1002/joc.1878.
Kim, J.-H., C.-H. Ho, and P.-S. Chu, 2010b: Dipolar redistribution of summertime tropical cyclone genesis between the Philippine Sea and the northern South China Sea and its possible mechanisms. J. Geophys. Res.: Atmos., 115, D06104, https://doi.org/10.1029/2009JD012196.
Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10, 789−804, https://doi.org/10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363−376, https://doi.org/10.1175/2009BAMS2755.1.
Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. [indicate subset used]. NOAA National Centers for Environmental Information.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 3057−3076, https://doi.org/10.1175/2010JCLI3497.1.
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636−651, https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2.
Landsea, C. W., R. A. Pielke Jr., A. M. Mesta-Nuñez, and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42, 89−129, https://doi.org/10.1023/A:1005416332322.
Lu, M.-M., P.-S. Chu, and Y.-C. Lin, 2010: Seasonal prediction of tropical cyclone activity near Taiwan using the Bayesian multivariate regression method. Wea. Forecasting, 25, 1780−1795, https://doi.org/10.1175/2010WAF2222408.1.
Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178−2190, https://doi.org/10.1175/JCLI4132.1.
Luo, J. J., S. Masson, S. K. Behera, and T. Yamagata, 2008a: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84−93, https://doi.org/10.1175/2007JCLI1412.1.
Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005a: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 4474−4497, https://doi.org/10.1175/JCLI3526.1.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005b: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344−2360, https://doi.org/10.1175/JCLI3404.1.
Luo, J. J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008b: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, https://doi.org/10.1029/2007GL032793.
Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30, 2250, https://doi.org/10.1029/2003GL018649.
MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072−1084, https://doi.org/10.1002/qj.2396.
Madec, G., P. Delécluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Note 11, 91 pp.
Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 3867−3893, https://doi.org/10.1175/JCLI-D-11-00346.1.
Manganello, J. V., and Coauthors, 2016: Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Climate, 29, 1179−1200, https://doi.org/10.1175/JCLI-D-15-0531.1.
Martin, E. R., and C. Thorncroft, 2015: Representation of African easterly waves in CMIP5 models. J. Climate, 28, 7702−7715, https://doi.org/10.1175/JCLI-D-15-0145.1.
Mei, W., Y. Kamae, S. P. Xie, and K. Yoshida, 2019: Variability and predictability of North Atlantic hurricane frequency in a large ensemble of high-resolution atmospheric simulations. J. Climate, 32, 3153−3167, https://doi.org/10.1175/JCLI-D-18-0554.1.
Murakami, H., and Coauthors, 2016: Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Climate, 29, 7977−7989, https://doi.org/10.1175/JCLI-D-16-0233.1.
Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, https://doi.org/10.1029/2008GL034147.
Ramage, C. S., and A. M. Hori, 1981: Meteorological aspects of El Niño. Mon. Wea. Rev., 109, 1827−1835, https://doi.org/10.1175/1520-0493(1981)109<1827:MAOEN>2.0.CO;2.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609−1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie, Hamburg, Germany, 90 pp.
Takaya, Y., T. Yasuda, T. Ose, and T. Nakaegawa, 2010: Predictability of the mean location of typhoon formation in a seasonal prediction experiment with a coupled general circulation model. J. Meteor. Soc. Japan, 88, 799−812, https://doi.org/10.2151/jmsj.2010-502.
Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, 85 pp.
Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 1070−1082, https://doi.org/10.1175/2010MWR3499.1.
Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307−2314, https://doi.org/10.1175/JCLI4074.1.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643−1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wang, C., B. Wang, and L. G. Wu, 2019: A region-dependent seasonal forecasting framework for tropical cyclone genesis frequency in the western North Pacific. J. Climate, 32, 8415−8435, https://doi.org/10.1175/JCLI-D-19-0006.1.
Wang, C. Z., and S.-K. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, https://doi.org/10.1029/2009GL041469.
Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nature Climate Change, 4, 201−205, https://doi.org/10.1038/nclimate2118.
Whitney, L. D., and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 2921−2930, https://doi.org/10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.
Wu, L. G., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 1537−1542, https://doi.org/10.1002/2015GL063450.
Xu, Z., M. K. Li, C. M. Patricola, and P. Chang, 2014b: Oceanic origin of southeast tropical Atlantic biases. Climate Dyn., 43, 2915−2930, https://doi.org/10.1007/s00382-013-1901-y.
Xu, Z., P. Chang, I. Richter, W. Kim, and G. L. Tang, 2014a: Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Climate Dyn., 43, 3123−3145, https://doi.org/10.1007/s00382-014-2247-9.
Zhan, R. F., Y. Q. Wang, and X. T. Lei, 2011: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509−521, https://doi.org/10.1175/2010JCLI3808.1.
Zhan, R. F., Y. Q. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 2408−2415, https://doi.org/10.1175/JCLI-D-12-00798.1.
Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 3858−3868, https://doi.org/10.1175/2010MWR3366.1.
Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653−6678, https://doi.org/10.1175/2009JCLI3049.1.