Alizadeh, M. J., M. R. Kavianpour, B. Kamranzad, and A. Etemad-Shahidi, 2019: A Weibull distribution based technique for downscaling of climatic wind field. Asia-Pacific Journal of Atmospheric Sciences, 55, 685−700, https://doi.org/10.1007/s13143-019-00106-z.
Bernier, N. B., S. Bélair, B. Bilodeau, and L. Y. Tong, 2014: Assimilation and high resolution forecasts of surface and near surface conditions for the 2010 vancouver winter olympic and paralympic games. Pure Appl. Geophys., 171, 243−256, https://doi.org/10.1007/s00024-012-0542-0.
Bosch, J., I. Staffell, and A. D. Hawkes, 2017: Temporally-explicit and spatially-resolved global onshore wind energy potentials. Energy, 131, 207−217, https://doi.org/10.1016/j.energy.2017.05.052.
Breiman, L., 2001: Random forests. Machine Learning, 45, 5−32, https://doi.org/10.1023/A:1010933404324.
Franco, B. M., L. Hernández-Callejo, and L. M. Navas-Gracia, 2020: Virtual weather stations for meteorological data estimations. Neural Computing and Applications, 32, 12 801−12 812,
Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, 2019: The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38−50, https://doi.org/10.1016/j.esr.2019.01.006.
Hengl, T., and Coauthors, 2017: SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748.
Hou, Y. K., Y. F. He, H. Chen, C. Y. Xu, J. Chen, J. S. Kim, and S. L. Guo, 2019: Comparison of multiple downscaling techniques for climate change projections given the different climatic zones in China. Theor. Appl. Climatol., 138, 27−45, https://doi.org/10.1007/s00704-019-02794-z.
Isaac, G. A., and Coauthors, 2014: Science of nowcasting olympic weather for vancouver 2010 (SNOW-V10): A world weather research programme project. Pure Appl. Geophys., 171, 1−24, https://doi.org/10.1007/s00024-012-0579-0.
Jing, W. L., P. Y. Zhang, H. Jiang, and X. D. Zhao, 2017: Reconstructing satellite-based monthly precipitation over northeast China using machine learning algorithms. Remote Sensing, 9, 781, https://doi.org/10.3390/rs9080781.
Joe, P., and Coauthors, 2010: Weather services, science advances, and the vancouver 2010 olympic and paralympic winter games. Bull. Amer. Meteor. Soc., 91, 31−36, https://doi.org/10.1175/2009BAMS2998.1.
Kadow, C., D. M. Hall, and U. Ulbrich, 2020: Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13, 408−413, https://doi.org/10.1038/s41561-020-0582-5.
Karpatne, A., and S. Liess, 2015: A guide to earth science data: Summary and research challenges. Computing in Science & Engineering, 17, 14−18, https://doi.org/10.1109/MCSE.2015.127.
Karpatne, A., I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, 2019: Machine learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering, 31, 1544−1554, https://doi.org/10.1109/TKDE.2018.2861006.
Keck, R. E., and N. Sondell, 2020: Validation of uncertainty reduction by using multiple transfer locations for WRF-CFD coupling in numerical wind energy assessments. Wind Energy Science, 5, 997−1005, https://doi.org/10.5194/wes-5-997-2020.
Krasnopolsky, V. M., and M. S. Fox-Rabinovitz, 2006: Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks, 19, 122−134, https://doi.org/10.1016/j.neunet.2006.01.002.
Leinonen, J., A. Guillaume, and T. L. Yuan, 2019: Reconstruction of cloud vertical structure with a generative adversarial network. Geophys. Res. Lett., 46, 7035−7044, https://doi.org/10.1029/2019GL082532.
Li, J., and A. D. Heap, 2011: A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6, 228−241, https://doi.org/10.1016/j.ecoinf.2010.12.003.
Liu, J. K., Z. Q. Gao, L. L. Wang, Y. B. Li, and C. Y. Gao, 2018a: The impact of urbanization on wind speed and surface aerodynamic characteristics in Beijing during 1991-2011,. Meteorol. Atmos. Phys., 130, 311−324, https://doi.org/10.1007/s00703-017-0519-8.
Liu, Y. C., D. Y. Chen, S. W. Li, and P. W. Chan, 2018b: Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling. Energy, 160, 582−596, https://doi.org/10.1016/j.energy.2018.06.205.
Liu, Y. H., J. M. Feng, Z. L. Yang, Y. H. Hu, and J. L. Li, 2019: Gridded statistical downscaling based on interpolation of parameters and predictor locations for summer daily precipitation in North China. J. Appl. Meteorol. Climatol., 58, 2295−2311, https://doi.org/10.1175/JAMC-D-18-0231.1.
Louppe, G. J., 2014: Understanding random forests: From theory to practice. arXiv: 1407.7502.
Miao, Y. C., J. P. Guo, S. H. Liu, H. Liu, Z. Q. Li, W. C. Zhang, and P. M. Zhai, 2017: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmospheric Chemistry and Physics, 17, 3097−3110, https://doi.org/10.5194/acp-17-3097-2017.
Nechaj, P., L. Gaál, J. Bartok, O. Vorobyeva, M. Gera, M. Kelemen, and V. Polishchuk, 2019: Monitoring of low-level wind shear by ground-based 3D lidar for increased flight safety, protection of human lives and health. International Journal of Environmental Research and Public Health, 16, 4584, https://doi.org/10.3390/ijerph16224584.
Nikulin, G., and Coauthors, 2018: Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa. Climate Services, 9, 72−85, https://doi.org/10.1016/j.cliser.2017.11.003.
Pirhalla, M., D. Heist, S. Perry, S. Hanna, T. Mazzola, S. P. Arya, and V. Aneja, 2020: Urban wind field analysis from the Jack Rabbit II special sonic anemometer study. Atmos. Environ., 243, 117871, https://doi.org/10.1016/j.atmosenv.2020.117871.
Prasanna, V., H. W. Choi, J. Jung, Y. G. Lee, and B. J. Kim, 2018: High-resolution wind simulation over incheon international airport with the unified model's rose nesting suite from KMA operational forecasts. Asia-Pacific Journal of Atmospheric Sciences, 54, 187−203, https://doi.org/10.1007/s13143-018-0003-5.
Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195−204, https://doi.org/10.1038/s41586-019-0912-1.
Rodrigues, E. R., I. Oliveira, R. Cunha, and M. Netto, 2018: DeepDownscale: A deep learning strategy for high-resolution weather forecast. 2018 IEEE 14th International Conference on E-Science, Amsterdam, IEEE, 415--422,
Rose, S., and J. Apt, 2015: What can reanalysis data tell us about wind power. Renewable Energy, 83, 963−969, https://doi.org/10.1016/j.renene.2015.05.027.
Rose, S., and J. Apt, 2016: Quantifying sources of uncertainty in reanalysis derived wind speed. Renewable Energy, 94, 157−165, https://doi.org/10.1016/j.renene.2016.03.028.
Salvação, N., and C. G. Soares, 2018: Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy, 145, 276−287, https://doi.org/10.1016/j.energy.2017.12.101.
Seiler, C., F. W. Zwiers, K. I. Hodges, and J. F. Scinocca, 2018: How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America's Atlantic coast. Climate Dyn., 50, 677−692, https://doi.org/10.1007/s00382-017-3634-9.
Szewc, K., B. Graca, and A. Dołęga, 2021: Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Science of the Total Environment, 761, 143272, https://doi.org/10.1016/j.scitotenv.2020.143272.
Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environmental Research Letters, 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.
Wang, G. S., X. D. Wang, H. Wang, M. Hou, Y. Li, W. J. Fan, and Y. L. Liu, 2020: Evaluation on monthly sea surface wind speed of four reanalysis data sets over the China seas after 1988. Acta Oceanologica Sinica, 39, 83−90, https://doi.org/10.1007/s13131-019-1525-0.
Wei, G., C. H. Peng, Q. A. Zhu, X. L. Zhou, and B. Yang, 2021: Application of machine learning methods for paleoclimatic reconstructions from leaf traits. International Journal of Climatology, 41, E3249−E3262, https://doi.org/10.1002/joc.6921.
Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North atlantic storm-track sensitivity to warming increases with model resolution. J. Climate, 28, 4513−4524, https://doi.org/10.1175/JCLI-D-14-00715.1.
Yan, Z. W., S. Bate, R. E. Chandler, V. Isham, and H. Wheater, 2002: An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. J. Climate, 15, 2073−2088, https://doi.org/10.1175/1520-0442(2002)015<2073:AAODMW>2.0.CO;2.
Yang, P., G. Y. Ren, P. C. Yan, and J. M. Deng, 2020: Tempospatial pattern of surface wind speed and the "urban stilling island" in Beijing city. J. Meteor. Res., 34, 986−996, https://doi.org/10.1007/s13351-020-9135-5.
Yu, C., H. C. Li, J. J. Xia, H. Q. Z. Wen, and P. W. Zhang, 2020: A data-driven random subfeature ensemble learning algorithm for weather forecasting. Communications in Computational Physics, 28, 1305−1320, https://doi.org/10.4208/cicp.OA-2020-0006.
Yu, J., T. J. Zhou, Z. H. Jiang, and L. W. Zou, 2019: Evaluation of near-surface wind speed changes during 1979 to 2011 over China based on five reanalysis datasets. Atmosphere, 10, 804, https://doi.org/10.3390/atmos10120804.
Zhai, S. X., and Coauthors, 2019: Fine particulate matter (PM2.5) trends in China, 2013−2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19, 11 031−11 041,
Zhang, D., L. Y. Chen, F. M. Zhang, J. Tan, and C. H. Wang, 2020: Numerical simulation of near-surface wind during a severe wind event in a complex terrain by multisource data assimilation and dynamic downscaling. Advances in Meteorology, 2020, 7910532, https://doi.org/10.1155/2020/7910532.
Zhang, L., Z. Q. Zhang, C. Y. Feng, M. R. Tian, and Y. N. Gao, 2021a: Impact of various vegetation configurations on traffic fine particle pollutants in a street canyon for different wind regimes. Science of the Total Environment, 789, 147960, https://doi.org/10.1016/j.scitotenv.2021.147960.
Zhang, L. Q., and Coauthors, 2021b: Reconstruction of ESA CCI satellite-derived soil moisture using an artificial neural network technology. Science of the Total Environment, 782, 146602, https://doi.org/10.1016/j.scitotenv.2021.146602.