Barker, H. W., 2008: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data. J. Geophys. Res. Atmos., 113, D00A01, https://doi.org/10.1029/2007JD009677.
Barker, H. W., G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2 127−2 152, https://doi.org/10.1002/qj.49712555810.
Bergman, J. W., and P. J. Rasch, 2002: Parameterizing vertically coherent cloud distributions. J. Atmos. Sci., 59, 2 165−2 182, https://doi.org/10.1175/1520-0469(2002)059<2165:PVCCD>2.0.CO;2.
Collins, W. D., and Coauthors, 2004: Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp, https://doi.org/10.5065/D63N21CH.
Di Giuseppe, F., 2005: Sensitivity of one-dimensional radiative biases to vertical cloud-structure assumptions: Validation with aircraft data. Quart. J. Roy. Meteor. Soc., 131, 1 655−1 676, https://doi.org/10.1256/qj.03.129.
Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., 72, 2 865−2 876, https://doi.org/10.1175/JAS-D-14-0277.1.
Ding, S. G., C. S. Zhao, G. Y. Shi, and C. A. Wu, 2005: Analysis of global total cloud amount variation over the past 20 years. Journal of Applied Meteorological Science, 16, 670−677, https://doi.org/10.3969/j.issn.1001-7313.2005.05.014. (in Chinese with English abstract
Fan, T. Y., and Coauthors, 2018: Quantify contribution of aerosol errors to cloud fraction biases in CMIP5 Atmospheric Model Intercomparison Project simulations. International Journal of Climatology, 38, 3 140−3 156, https://doi.org/10.1002/joc.5490.
Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 20, 7 829−7 842, https://doi.org/10.5194/acp-20-7829-2020.
Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787−789, https://doi.org/10.1038/nature04636.
Ghan, S. J., L. R. Leung, and Q. Hu, 1997: Application of cloud microphysics to NCAR community climate model. J. Geophys. Res. Atmos., 102, 16 507−16 527, https://doi.org/10.1029/97JD00703.
Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 6 461−6 476, https://doi.org/10.1175/JCLI-D-11-00650.1.
Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res. Atmos., 95, 18 687−18 703, https://doi.org/10.1029/JD095iD11p18687.
Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 2 903−2 909, https://doi.org/10.1002/qj.49712656914.
Intergovernmental Panel on Climate Change, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.
Jing, X. W., H. Zhang, J. Peng, J. N. Li, and H. W. Barker, 2016: Cloud overlapping parameter obtained from CloudSat/CALIPSO dataset and its application in AGCM with McICA scheme. Atmospheric Research, 170, 52−65, https://doi.org/10.1016/j.atmosres.2015.11.007.
Jing, X. W., H. Zhang, M. Satoh, and S. Y. Zhao, 2018: Improving representation of tropical cloud overlap in GCMs based on cloud-resolving model data. J. Meteor. Res., 32, 233−245, https://doi.org/10.1007/s13351-018-7095-9.
Kato, S., S. Sun‐Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res. Atmos., 115, D00H28, https://doi.org/10.1029/2009JD012277.
Klinger, C., G. Feingold, and T. Yamaguchi, 2019: Cloud droplet growth in shallow cumulus clouds considering 1-D and 3-D thermal radiative effects. Atmospheric Chemistry and Physics, 19, 6 295−6 313, https://doi.org/10.5194/acp-19-6295-2019.
Kumar, S., Y.-S. Vidal, A. S. Moya-Álvarez, and D. Martínez-Castro, 2019: Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmospheric Research, 225, 193−208, https://doi.org/10.1016/j.atmosres.2019.03.027.
Li, J. M., Q. Y. Lv, B. D. Jian, M. Zhang, C. F. Zhao, Q. Fu, K. Kawamoto, and H. Zhang, 2018: The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau. Atmospheric Chemistry and Physics, 18, 7 329−7 343, https://doi.org/10.5194/acp-18-7329-2018.
Li, J. M., B. D. Jian, C. F. Zhao, Y. X. Zhao, J. Wang, and J. P. Huang, 2019: Atmospheric instability dominates the long‐term variation of cloud vertical overlap over the southern great plains site. J. Geophys. Res. Atmos., 124, 9 691−9 701, https://doi.org/10.1029/2019JD030954.
Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895−918, https://doi.org/10.1175/JCLI-D-17-0208.1.
Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 7, 3 425−3 446, https://doi.org/10.5194/acp-7-3425-2007.
Lu, P., H. Zhang, and J. N. Li, 2011: Correlated k-distribution treatment of cloud optical properties and related radiative impact. J. Atmos. Sci., 68, 2 671−2 688, https://doi.org/10.1175/JAS-D-10-05001.1.
Lu, R. Y., B. W. Dong, R. D. Cess, and G. L. Potter, 2004: The 1997/98 El Niño: A test for climate models. Geophys. Res. Lett., 31, L12216, https://doi.org/10.1029/2004GL019956.
Ma, Z. S., Q. J. Liu, C. F. Zhao, X. S. Shen, Y. Wang, J. H. Jiang, Z. Li, and Y. Yung, 2018: Application and evaluation of an explicit prognostic cloud‐cover scheme in GRAPES global forecast system. Journal of Advances in Modeling Earth Systems, 10, 652−667, https://doi.org/10.1002/2017MS001234.
Mace, G. G., and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15, 2 505−2 515, https://doi.org/10.1175/1520-0442(2002)015<2505:CLOCDF>2.0.CO;2.
Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res. Atmos., 112, D05201, https://doi.org/10.1029/2006JD007555.
Minnis, P., D. Doelling, L. Nguyen, R. Palikonda, D. A. Spangenberg, G. Hong, and H. Yi, 2011: Improved cloud and surface properties by combining conventional and L-1 satellite imager data. Preprints, AGU Fall Meeting 2011, San Francisco, CA, USA.
Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3 642−3 659, https://doi.org/10.1175/2008JCLI2105.1.
Naud, C. M., A. Del Genio, G. G. Mace, S. Benson, E. E. Clothiaux, and P. Kollias, 2008: Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 1 758−1 770, https://doi.org/10.1175/2007JCLI1828.1.
Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res. Atmos., 108, 4415, https://doi.org/10.1029/2002JD002911.
Oreopoulos, L., D. Lee, Y. C. Sud, and M. J. Suarez, 2012: Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model. Atmospheric Chemistry and Physics, 12, 9 097−9 111, https://doi.org/10.5194/acp-12-9097-2012.
Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376, https://doi.org/10.1029/2002JD003322.
Potter, G. L., and R. D. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res. Atmos., 109, D02106, https://doi.org/10.1029/2003JD004018.
Räisänen, P., and H. W. Barker, 2004: Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation. Quart. J. Roy. Meteor. Soc., 130, 2 069−2 085, https://doi.org/10.1256/qj.03.215.
Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. N. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 2 047−2 067, https://doi.org/10.1256/qj.03.99.
Randles, C. A., and Coauthors, 2013: Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 13, 2 347−2 379, https://doi.org/10.5194/acp-13-2347-2013.
Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 1 587−1 614, https://doi.org/10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.
Sato, T., F. Kimura, and A. S. Hasegawa, 2007: Vegetation and topographic control of cloud activity over arid/semiarid Asia. J. Geophys. Res. Atmos., 112, D24109, https://doi.org/10.1029/2006JD008129.
Shonk, J. K. P., R. J. Hogan, J. M. Edwards, and G. G. Mace, 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part I: Review and parametrization. Quart. J. Roy. Meteor. Soc., 136, 1 191−1 204, https://doi.org/10.1002/qj.647.
Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos., 113, D00A18, https://doi.org/10.1029/2008JD009982.
Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352, 224−227, https://doi.org/10.1126/science.aad5300.
Tompkins, A. M., and F. Di Giuseppe, 2015: An interpretation of cloud overlap statistics. J. Atmos. Sci., 72, 2 877−2 889, https://doi.org/10.1175/JAS-D-14-0278.1.
Wang, H. B., H. Zhang, X. W. Jing, and B. Xie, 2018: Effects of different cloud overlapping parameters on simulated total cloud fraction over the globe and East Asian region. Acta Meteorologica Sinica, 76, 767−778, https://doi.org/10.11676/qxxb2018.027. (in Chinese with English abstract
Wang, P.-H., P. Minnis, M. P. McCormick, G. S. Kent, G. K. Yue, D. F. Young, and K. M. Skeens, 1998: A study of the vertical structure of tropical (20°S−20°N) optically thin clouds from SAGE II observations. Atmospheric Research, 47−48, 599−614, https://doi.org/10.1016/S0169-8095(97)00085-9.
Wang, Z. L., H. Zhang, and P. Lu, 2014: Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1 _CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J. Geophys. Res. Atmos., 119, 8 400−8 417, https://doi.org/10.1002/2014JD021886.
Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905−922, https://doi.org/10.1007/s003820100157.
Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 2 373−2 423, https://doi.org/10.1175/MWR-D-11-00121.1.
Xie, S. C., X. H. Liu, C. F. Zhao, and Y. Y. Zhang, 2013: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5 981−5 999, https://doi.org/10.1175/JCLI-D-12-00517.1.
Yang, Y., and Coauthors, 2019: Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research, 221, 27−33, https://doi.org/10.1016/j.atmosres.2019.01.027.
Zhang, B. C., Z. Guo, X. L. Chen, T. J. Zhou, X. Y. Rong, and J. Li, 2020: Responses of cloud-radiative forcing to strong El Niño events over the western Pacific warm pool as simulated by CAMS-CSM. J. Meteor. Res., 34, 499−514, https://doi.org/10.1007/s13351-020-9161-3.
Zhang, H., 2015: The Study on Atmospheric Absorption Radiation. China Meteorological Press, 179 pp. (in Chinese)
Zhang, H., 2016: BCC_RAD Radiative Transfer Model. China Meteorological Press, 205 pp. (in Chinese)
Zhang, H., and X. W. Jing, 2016: Advances in studies of cloud overlap and its radiative transfer issues in the climate models. Acta Meteorologica Sinica, 74, 103−113, https://doi.org/10.11676/qxxb2016.009.
Zhang, H., T. Nakajima, G. Y. Shi, T. Suzuki, and R. Imasu, 2003: An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res. Atmos., 108, 4641, https://doi.org/10.1029/2002JD003358.
Zhang, H., G. Y. Shi, T. Nakajima, and T. Suzuki, 2006a: The effects of the choice of the k-interval number on radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 98, 31−43, https://doi.org/10.1016/j.jqsrt.2005.05.090.
Zhang, H., T. Suzuki, T. Nakajima, G. Y. Shi, X. Y. Zhang, and Y. Liu, 2006b: Effects of band division on radiative calculations. Optical Engineering, 45, 016002, https://doi.org/10.1117/1.2160521.
Zhang, H., and Coauthors, 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38, 1 675−1 693, https://doi.org/10.1007/s00382-011-1131-0.
Zhang, H., J. Peng, X. W. Jing, and J. N. Li, 2013: The features of cloud overlapping in Eastern Asia and their effect on cloud radiative forcing. Science China Earth Sciences, 56, 737−747, https://doi.org/10.1007/s11430-012-4489-x.
Zhang, H., X. Jing, and J. Li, 2014: Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geoscientific Model Development, 7, 737−754, https://doi.org/10.5194/gmd-7-737-2014.
Zhang, H., Q. Chen, and B. Xie, 2015: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. Journal of Quantitative Spectroscopy and Radiative Transfer, 150, 76−86, https://doi.org/10.1016/j.jqsrt.2014.08.024.
Zhang, H., Z. L. Wang, and S. Y. Zhao, 2017: Atmospheric Aerosols and Their Climate Effects. China Meteorological Press, 204 pp. (in Chinese)
Zhang, H., X. W. Jing, and J. Peng, 2019: Cloud Radiation and Climate. China Meteorological Press, 270 pp. (in Chinese)
Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing, Geophys. Res. Lett., 42, 557−564, https://doi.org/10.1002/2014GL062015.
Zhao, C. F., and Coauthors, 2020: Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 7(3), 492−495, https://doi.org/10.1093/nsr/nwz184.