Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607.
Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteorol. Climatol., 51, 1145−1163, https://doi.org/10.1175/JAMC-D-11-0203.1.
Bodas-Salcedo, A., and Coauthors, 2011: COSP: satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023−1043, https://doi.org/10.1175/2011BAMS2856.1.
Bony, S., M. Webb, C. Bretherton, S. Klein, P. Siebesma, G. Tselioudis, and M. Zhang, 2011: CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exchanges, 56(2), 20−22.
Caldwell, P. M., M. D. Zelinka, K. E. Taylor, and K. Marvel, 2016: Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Climate, 29(2), 513−524, https://doi.org/10.1175/JCLI-D-15-0352.1.
Colman, R. A., 2015: Climate radiative feedbacks and adjustments at the Earth's surface. J. Geophys. Res., 120(8), 3173−3182, https://doi.org/10.1002/2014JD022896.
Colman, R. A., and B. J. McAvaney, 1997: A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. J. Geophys. Res., 102, 19 383−19 402, https://doi.org/10.1029/97JD00206.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Gui, S., S. L. Liang, and L. Li, 2010: Evaluation of satellite-estimated surface longwave radiation using ground-based observations. J. Geophys. Res., 115, D18214, https://doi.org/10.1029/2009JD013635.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, Y. X., S. Rodier, K.-M. Xu, W. B. Sun, J. P. Huang, B. Lin, P. W. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.
Huang, X. L., X. H. Chen, and Q. Yue, 2019: Band-by-band contributions to the longwave cloud radiative feedbacks. Geophys. Res. Lett., 46, 6998−7006, https://doi.org/10.1029/2019GL083466.
Huang, Y., Y. Xia, and X. X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res., 122, 10 578−10 593, https://doi.org/10.1002/2017JD027221.
Hubanks, P., S. Platnick, M. King, and B. Ridgway, 2016: MODIS atmosphere L3 gridded product algorithm theoretical basis document (ATBD) & users guide. MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-30, 124 pp.
Intergovernmental Panel on Climate Change, 2014: Clouds and aerosols. Climate Change 2013-The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 571−657, https://doi.org/10.1017/CBO9781107415324.016.
Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) data product. J. Climate, 31(11), 4501−4527, https://doi.org/10.1175/JCLI-D-17-0523.1.
Loeb, N. G., and Coauthors, 2018: Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31(2), 895−918, https://doi.org/10.1175/JCLI-D-17-0208.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682, https://doi.org/10.1029/97JD00237.
Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from terra and aqua. IEEE Trans. Geosci. Remote Sens., 55, 502−525, https://doi.org/10.1109/TGRS.2016.2610522.
Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21(10), 2269−2282, https://doi.org/10.1175/2007JCLI2044.1.
Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21(14), 3504−3520, https://doi.org/10.1175/2007JCLI2110.1.
Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83(12), 1771−1790, https://doi.org/10.1175/BAMS-83-12-1771.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90(3), 311−324, https://doi.org/10.1175/2008BAMS2634.1.
Wang, F., H. Zhang, Q. Chen, M. Zhao, and T. You, 2020: Analysis of short-term cloud feedback in East Asia using cloud radiative kernels. Adv. Atmos. Sci., 37, 1007−1018, https://doi.org/10.1007/s00376-020-9281-9.
Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 17−38, https://doi.org/10.1007/s00382-006-0111-2.
Yang, F., and J. Cheng, 2020: A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters. Remote Sensing of Environment, 248, 111972, https://doi.org/10.1016/j.rse.2020.111972.
Young, A. H., K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, 2018: The international satellite cloud climatology project h-series climate data record product. Earth System Science Data, 10, 583−593, https://doi.org/10.5194/essd-10-583-2018.
Yue, Q., B. H. Kahn, E. J. Fetzer, M. Schreier, S. Wong, X. H. Chen, and X. L. Huang, 2016: Observation-based longwave cloud radiative kernels derived from the A-Train. J. Climate, 29(6), 2023−2040, https://doi.org/10.1175/JCLI-D-15-0257.1.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 3715−3735, https://doi.org/10.1175/JCLI-D-11-00248.1.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 3736−3754, https://doi.org/10.1175/JCLI-D-11-00249.1.
Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett., 43, 9259−9269, https://doi.org/10.1002/2016GL069917.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhang, Y., Z. Jin, and M. Sikand, 2021: The top-of-atmosphere, surface and atmospheric cloud radiative kernels based on ISCCP-H datasets: method and evaluation. Journal of Geophysical Research, http://doi.org/10.1029/2021JD035053.
Zhang, Y. C., W. B. Rossow, and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, https://doi.org/10.1029/2005JD006873.
Zhou, C., M. D. Zelinka, A. E. Dessler, and P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS data. J. Climate, 26, 4803−4815, https://doi.org/10.1175/JCLI-D-12-00547.1.
Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on interannual climate fluctuations. Geophys. Res. Lett., 41, 9166−9173, https://doi.org/10.1002/2014GL062095.
Zhou, C., M. D. Zelinka, A. E. Dessler, and M. H. Wang, 2021: Greater committed warming after accounting for the pattern effect. Nature Climate Change, 11, 132−136, https://doi.org/10.1038/s41558-020-00955-x.